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A B S T R A C T   

With the urgency of the transition to a resilient low-carbon economy, the monitoring and prediction of regional 
renewable energy generation over time have become increasingly important. The difficulties of renewable energy 
data transfer between multiple stakeholders have also caused elevated the need for more trustworthy data an
alytics within the energy grid. However, only a few voltage transformation facilities in the grid (i.e. substations) 
contain complete information about the renewable energy generated within the region. A large number of 
incomplete-information substations with fully-missing renewable energy data limits the analysis and policy- 
making related to renewable energy. This work studies the potential to transfer information from perfect- 
information substations to incomplete-information substations with fully-missing renewable energy data. To 
preserve the practicality of renewable energy prediction, a domain adaptation for zero-shot learning in sequence 
(DAZLS) strategy is proposed for fully-missing renewable energy prediction in substations. DAZLS is a model 
agnostic technique which can utilize any base model within its framework for the prediction of renewable energy 
generation. Using total measured power and weather information (solar irradiation and wind speed) in 
information-complete substations (8831 timestamps for 10 substations) within the Netherlands, we developed a 
model to predict solar and wind power from energy producers associated with information incomplete sub
stations via additional real-time weather data, metadata information (e.g. geospatial position, existence and 
capacity of renewable facilities). Using DAZLS, the average root-mean-squared error for prediction (RMSEP) is 
0.07, while that of a default transfer learning model is 0.70. This meant that renewable energy sources in 
information-incomplete substations could be reliably monitored using weather data, meta-data and physical 
data, resulting in lesser investment in power meters. This approach was demonstrated for the highest frequency 
prediction possible in the grid, with a near-real-time frequency of 15 min. Our method can be effectively used for 
renewable energy grid optimization, planning and analysis.   

1. Introduction 

The United Nations has provided sustainable development goals 
(SDGs) to be reached by 2030 [1]. SDG 7 is targeted to provide afford
able, reliable, sustainable and modern energy for all. In this context, the 
Netherlands pledged to combat climate change by reducing at least 40% 
of greenhouse gas (GHG) emissions and increasing renewable energy 
shares to at least 32% compared to 1990 levels [2]. Since the year 2000, 
the Netherlands has promoted energy transition initiatives [3] to 

achieve sustainable development via micro novel configurations, 
patchworks of regimes, and evolving socio-technical landscapes. Kemp 
et al. [4] discussed that the challenges of national governance for energy 
transition include ambivalence about goals, uncertainty about 
cause-effect relations, distributed power of control, political myopia, 
determination of short-term steps for long-term change and the danger 
of lock-in to new systems. With more investments in onshore wind en
ergy [5] and the diffusion of photovoltaic systems among consumers [6], 
more renewable energy innovations are emerging [7]. 

The stability of the energy generation process is affected by the 

* Corresponding author. 
E-mail address: SinYong.Teng@ru.nl (S.Y. Teng).  

Contents lists available at ScienceDirect 

Renewable and Sustainable Energy Reviews 

journal homepage: www.elsevier.com/locate/rser 

https://doi.org/10.1016/j.rser.2023.113662 
Received 27 August 2022; Received in revised form 6 August 2023; Accepted 16 August 2023   

mailto:SinYong.Teng@ru.nl
www.sciencedirect.com/science/journal/13640321
https://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2023.113662
https://doi.org/10.1016/j.rser.2023.113662
https://doi.org/10.1016/j.rser.2023.113662
http://creativecommons.org/licenses/by/4.0/


Renewable and Sustainable Energy Reviews 186 (2023) 113662

2

equilibrium of energy demand and supply [8]. Energy security and 
stability has been a long-term concern in Europe [9,10] and many parts 
of the world (e.g. Africa [11,12], Brazil [13], China [14], Malaysia [15], 
Singapore [13], United States [16], Japan [17], etc.). Recent pandemic 
[18] and warfare [19] highlighted the importance of digitalization for 
energy systems. The COVID-19 pandemic has significantly impacted the 
energy sector by increasing energy consumption for plastic production, 
energy and waste due to hygiene supplies, and altered energy supply 
industries [20]. Further considering recent European energy politics 
during Ukraine warfare, the supply of natural gas has become unreliable 
and expensive [21]. This relates to consumers changing behaviour to
wards energy saving and consumption, creating interest in a transition 
towards clean and decarbonized energy [22]. With growing renewable 
energy sources as supplies, the requirements for predicting renewable 
energy generation have been increasing in interest [23]. 

Benefits of digitalization can improve aspects related to renewable 
energy integration [24], reduces energy consumption, decreases energy 
intensity and optimizes energy structure [25]. Baidya et al. [26] discuss 
that digitalization in energy research has benefits for grid data integrity, 
protection against cyber-attack, privacy protection, trust management, 
grid up-scaling, authentication, grid data monitoring, improved energy 
demand response, prosumer support, enhanced distributed energy sys
tem, open energy market design, and enhanced environmental impacts. 
Artificial intelligence (AI) algorithms [27,28] has also became an 
important part of renewable energy digitalization to reduce uncertainty 
for renewable energy quantification, stabilizing energy operation and 
management. The combination of high fidelity AI models, information 
infrastructure and hardware is also the key cornerstone for energy dig
ital twin technologies [8], which may cover various scales of process 
level including nano (molecular level), micro (single operation level), 
meso (multiple operation level) and macro (regional level). 

Near real-time frequency energy prediction is crucial for energy 
digital twin at macro-level as the intraday electricity trading system in 
Europe [9,10] (and many other regions [11,12]) is based on 15-min 
interval. Vaz et al. [13] demonstrated a Nonlinear Autoregressive with 
eXogenous inputs (NARX) model for photovoltaic system power pro
duction forecasting at 15-min interval, demonstrating usefulness of the 
algorithm over persistence model. Previous work Teng et al. [14] 
demonstrated the usefulness of hierarchical temporal memory coupled 
with dual-mode optimization for waste-to-energy forecasting and opti
mization with 15-min interval. O’Dwyer et al. [15] also demonstrate 

that optimal multi-vector energy systems can be coordinated via a dig
ital twin with 15-min interval. From a broader view, near real-time 
frequency applications also aligns with various digital twin solutions 
towards the ‘15-min city’ [16] with the goal of increasing urban effi
ciency, resilience and sustainability [17]. 

2. Literature review 

Data analysis and data infrastructure are being developed for energy 
planning [18] and energy saving [19]. Machine learning algorithms 
have been used to predict renewable energy generation [20]. For 
example, multiple machine learning methods were used for wind energy 
forecasting [21] and solar irradiation [22]. As an example, Li et al. [23] 
used a multi-verse optimizer to optimize a support vector machine in 
predicting photovoltaic power generation. Díaz–Vico et al. [24] used a 
deep neural network for the predictions of solar and wind energy. Lasso, 
k-Nearest Neighbour, XGBoost, Support Vector Regression and Random 
Forest were evaluated by Demolli et al. [25] in providing accurate wind 
power forecasting. Despite the recent usage of machine learning [26], 
deep learning and statistical approaches [27] for direct renewable en
ergy forecasting, most predictions rely on high-quality temporal infor
mation to carry out predictions. 

Missing data commonly occurs in renewable energy systems and can 
be categorized as (i) partially missing values and (ii) fully missing data. 
The impact of missing data on renewable energy is critical as it deviates 
from the performance estimation of the system [28,29]. Further effects 
of missing data also create misestimates in renewable energy resources 
leading to bias during policy-making [30]. For example, missing data in 
renewable energy systems can directly affect the calculated impact in 
life-cycle assessment (LCA), resulting in a difference between LCA in
tegrated certification and LCA of buildings [31]. Such missing data 
problems also make the establishment of an adequate digital twin for 
renewable energy systems highly challenging [32]. This limits the po
tential of using digital twins for applications such as augmentation of 
predictability, improvement of asset economics, optimization of unit 
control, and reduction of unplanned outages [33]. 

The high-frequency quantification of carbon dioxide emission miti
gation by relying on renewable energy instead of fossil fuels is crucial for 
international energy decision-making. However, high-frequency moni
toring of solar and wind power generated is commonly missing in 
regional substations due to (i) costs and management of additional 

List of abbreviations 

Abbreviations Definition 
AI Artificial intelligence 
CORAL Correlation Alignment 
DAZLS Domain Adaptation for Zero-Shot Learning in Sequence. 

The strategy proposed in this work (pronounced as 
“dazzles”) 

GHG Greenhouse gases 
HAL An anonymized substation in the mid-north of the 

Netherlands 
HFDP An anonymized substation in the west of the Netherlands 
LCA Lifecycle assessment 
LLS An anonymized substation in the center of the Netherlands 
MCA Misestimates in carbon avoidance 
MNZL An anonymized substation in the mid-north of the 

Netherlands 
NAP Normal Amsterdam level 
NARX Nonlinear Autoregressive with eXogenous inputs 
NRYN An anonymized substation in the south of the Netherlands 
openSTEF Open Short-Term Energy Forecasting package. 

Sometimes also referring to the default unsupervised 
energy splitting method within the package 

OWD An anonymized substation in the east-north of the 
Netherlands 

PCA Principal component analysis 
PLS Partial least squares 
PLS-PM Partial least squares – Path modelling extension 
Process PLS Process partial least squares 
RMSE Root-mean-square error 
RMSEP Root-mean-square error for prediction 
SDG Sustainable development goals 
WEW An anonymized substation in the west-north of the 

Netherlands 
WHF An anonymized substation in the west-north of the 

Netherlands 
WLS An anonymized substation in the east-south of the 

Netherlands 
WWF An anonymized substation in the west-north of the 

Netherlands 
XGBoost eXtreme Gradient Boosting. A supervised machine learning 

model  
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sensors [34], (ii) privacy challenges related to different companies 
operating renewable energy systems [35], and (iii) data infrastructure 
difficulties on large-scale [36]. Therefore, there are commonly only a 
few perfect-information substations and many incomplete-information 
substations (with fully-missing renewable fraction data) for renewable 
energy monitoring. In incomplete-information substations, the total 
load is measured while there is no information about renewable energy 
generated. For such cases, renewable energy quantification is chal
lenging and rule-of-thumbs estimation is commonly used [37]. Research 
on addressing partially missing values includes popular approaches of 
using data interpolation [38] or imputation [39] to manage missing 
values within a short time span. Apart from partially-missing values, 
problems related to fully-missing renewable energy data are often 
overlooked and rarely studied in the literature. 

In the real grid management scenario, many substations often have 
fully missing data (i.e. information-incomplete substations) instead of 
partially-missing values, as the substation does not contain the sensors 
necessary for renewable energy data collection. In such cases, missing 
data imputation cannot be performed due to the fully missing historical 
renewable energy data. Related metrological analysis from Moustris 
et al. [40] proposed to use 7 representative locations in Greece to esti
mate the solar irradiation within the country. Although the work did not 
relate hourly-frequency solar irradiation to energy systems, it suggests 
that missing locations could be predicted from measurement point lo
cations. Furthermore, Tasnim et al. [41] also recommended a 
cluster-based transfer learning method to be used to predict new stations 
from existing stations. Although the problem statements from these 
works are different, they suggest the potential of transfer learning 
(domain adaptation) and fixed representative locations for renewable 
energy prediction. Nevertheless, the application to provide near 
real-time predictions for fully-missing renewable energy generation data 
at the lowest substation level has never been addressed. 

Domain adaptation [42] is a subfield within machine learning which 
deals with (i) different source and target marginal distribution on input 
data and (ii) same task on source and target domain. Domain adaptation 
is generally used for image recognition [43], language processing [44], 
and other traditional machine learning applications [45]. Although 
many researchers solve domain adaptation problems with deep neural 
network [46–48], domain adaptation can sometimes be elegantly solved 
via straightforward algorithms [49–51] depending on the application 
leading to improved model interpretability. For tasks related to natural 
language processing, Daume III [49] proposed using kernel to map 
augmented features to target domain. Blitzer et al. [51] proposed 
structural correspondence learning for domain adaptation. More 
recently, Sun et al. [50] proposed an approach based on correlation 
alignment (CORAL) for object detection and sentiment analysis. Kouw 
et al. [52] discussed that domain adaptation strategy can be generally 
categorized as sample-based, feature-based and inference-based 
methods. 

The use of weather information, geospatial metadata, and physical 
metadata to simultaneously predict the energy generation of multiple 
target renewable energy generation via domain adaptation approach is 
still a research gap in the literature. This is an urgent problem because 
most energy monitoring substations do not record continuous data for 
the renewable fractions, causing fully-missing renewable energy data. In 
this work, we propose a framework to utilize metadata and apply 
transfer learning for fully-missing data by utilizing information from 
fixed representative substations. The framework relies on a new 
inference-based domain adaptation strategy via sequential boosting for 
the specific application of renewable energy prediction. With this, a 
high-level understanding of the underlying mechanism and perfor
mances of the regional renewable systems can be obtained to provide 
high-frequency reconciliation for environmental assessment or policy- 
making [53]. 

The main novelty of this work is that it is a model-agnostic frame
work to predict renewable energy generation in incomplete-information 

substations in near real-time frequency. The technique assigns infor
mation to 3 different parts (domain, adaptation, and physical informa
tion) of the model sequentially to achieve renewable energy prediction 
on target substations with no additional renewable energy meters 
required. This domain adaptation technique can be used on any data- 
driven model and is fully scalable to achieve renewable predictions to
wards sustainability. To provide a high-frequency prediction of renew
able energy generation, perfect-information substations are selected and 
the expected performance on fully-missing data substations is validated 
via the leave-one-out method [54]. The combined use of weather data, 
geospatial and system metadata to perform zero-shot learning [55] is 
studied for 10 perfect-information substations in the Netherlands (see 
Fig. 1). Subsequent sections of this paper is arranged as methodology 
(Section 3), results (Section 4), discussion (Section 5) and conclusion 
(Section 6). 

3. Methodology 

3.1. Framework 

The overall methodology of this work is illustrated in Fig. 2. The 
main task is to transfer knowledge from complete information to 
incomplete-information substations for renewable energy prediction. 
Firstly, exploration analysis is carried out using an unsupervised 
learning approach by combining principal component analysis (PCA) 
and the Ledoit-Wolf covariance shrinkage method to uncover the un
derlying covariance between all the substations. 

Next, a proposed domain adaption for zero-shot learning in sequence 
(DAZLS) strategy was deployed to exploit the domain information, 
metadata and physical constraints of the problem. Multiple base models 
and moving window sizes are tested in DAZLS, while the best model is 
selected and used to quantify GHG emissions and compared to an un
supervised learning approach in the OpenSTEF package [56] which was 
used as default in the case study. The improvement of misestimates in 
carbon avoidance due to using renewables (as opposed to 
non-renewables) is then compared for the default OpenSTEF method 
and the best method obtained by DAZLS. 

Difficult-to-predict substations were explored using a supervised 
explained variance approach using Process Partial Least Squares (PLS) 
as a post-hoc analysis. The most important pathway with the most sum of 
explained variances and a low number of nodes in the path is selected 
via the Pareto no-preference method. The identified pathway provides a 
sequential interpretation of the explained variances for the prediction. 

3.2. Data 

For analysis, the target substation will be rotated amongst the 10 
studied substations (see Fig. 1) as a leave-one-out validation approach. A 
total of 8831 timestamps for 10 substations with 15-min frequency were 
used. Metadata is categorized into two types of metadata: (i) target 
metadata and (ii) source metadata (see Table 1). The input data of the 
model consist of weather data and the mandatorily measured total load 
at the substation. The purpose of the model is to provide a 15-min in
terval prediction for solar and wind power generated by using infor
mation from perfect information substations to predict fully missing 
target substations. 

3.3. Explorative modelling and analysis 

To explore the relationships between multi-block and multivariate 
input data of all substations (8831 timestamps for 10 substations), a 
combined principal component analysis [59] and Ledoit-Wolf covari
ance shrinkage estimator [60]. Firstly, for each block of input data the 
substation, the multivariate input data (X) with number of samples (s)
and number of variables (v) is dimensionally reduced using principal 
component analysis (PCA) to give its scores, T. The general PCA 
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equation can be provided as: 

X =TPT + E (1) 

This shows that the X can be decomposed into T and its transposed 
vector of the regression coefficient, PT. Here, we consider only the 
dimension reduction to 1 principal component per block for simple 
interpretation and to fit the covariance shrinkage analysis. This means 
that the score matrix is T = [t1] with size [s×1] and the regression co
efficient matrix is P = [p1] with size [v × 1]. 

For blocks of data in each substation in N = [1,…,n], the multi-block 
scores matrix Z can be constructed as the following, with the size [s × n]. 

Z=

⎡

⎣
t1,1 ⋯ t1,n
⋮ ⋱ ⋮

ts,1 ⋯ ts,n

⎤

⎦ (2) 

Covariance is an important property of understanding the local 
control of data between blocks, it also provides insight into the effects of 
environmental variations [61]. Covariance shrinkage methods are used 
to provide a covariance estimator that is more well-conditioned and 
accurate than directly using the sample covariance matrix [60]. The 
Ledoit-Wolf covariance shrinkage estimator [60] provides a robust 
estimation of the covariance (Σ∗) by solving the minimization problem 
below. 

min
α,β,δ,μ

α2β2

δ2 (3)  

s.t. Σ∗ =
β2

δ2 μI +
α2

δ2 S  

δ2 =α2 + β2  

Where α, β, δ, μ are parameters to be optimized, S is the sample covari

ance matrix and S = ZZT

s . To complete the equation, I is an identity 
matrix of the same size as S. For interpretation, only the relative 
magnitude of the covariance matrix is taken into account. Hence, the 
absolute value of the covariance matrix, |Σ∗| is min-max normalized 
between 0 and 1 and the lower triangle of the matrix is used as an ad
jacency matrix for an undirected graph as visualization. 

3.4. Domain adaptation for zero-shot learning in sequence (DAZLS) 

Zero-shot learning for renewable prediction on unseen incomplete- 
information substations is challenging and can involve models with 
highly parameterized and nonlinear methods, which devastates the 
possibilities for complete interpretation. Furthermore, the variance and 
bias trade-off problem with zero-shot learning causes more difficulties in 
prediction [62]. Often in prediction, when the variations in the data are 
well-predicted, there is an offset in the prediction and vice-versa. This 
work proposes DAZLS as a generic framework that is effective even for 
simple machine learning methods. 

The task is to predict the output data (yt) of the target substation 
using data from multiple sources of other information-complete sub
stations. In such cases, target metadata (Ns), source metadata (Ms), input 
data (Xs), output data (ys) will be available for the source substation (s). 
The corresponding target metadata (Nt), source data (Mt), and input 
data (Xt) are present for the target substation, however no output data 
(yt) is available (see Fig. 3(a)). This problem formulates as a zero-shot 
learning problem [63] where the model has to carry out a prediction 
for the unseen target substation, using training data from other 
substations. 

The DAZLS approach proposed here is a 3-step approach which 
consists of the domain model, adaptation model and physical correction 
model deployed in sequence (see Fig. 3(b)). The DAZLS strategy is 
agnostic to the base model of the domain model and the adaptation 
model, which means any data-driven model can be plugged and played 

Fig. 1. The location of the studied 10 perfect-information substations in the Netherlands. The substations have their names encoded as HAL, MNZL, OWD, WWF, 
WHF, WEW, LLS, HFDP, WLS and NRYN. The four subpictures represent visual examples of substations in the Netherlands with their exact location anonymized. 
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to serve this purpose. The physical correction model is specific to this 
task and can be easily adapted for similar applications. Firstly, the 
domain model (fd) maps the input data (Xs) to the output data (ys) in the 
information-complete source substations. The model gives predicted 
output data (yd) as the following. 

yd = f d(Xs) (4) 

Next, the predicted output data (yd) from the domain model is 
concatenated with the source metadata (Ms) and acts as input for the 
adaptation model (fa) to predict the output data (ys) again. This step 
maps the input-output data in the domain model into the metadata 
domain and provides an output prediction (ya) as shown below. 

ya = f a([yd,Ms]) (5) 

Lastly, physically impossible predictions are removed and renor
malized using the physical correction module. In this task, there is bi
nary target metadata for which solar or wind facility is present (B). For 
this, the element-wise multiplication of the output prediction from the 
adaptation model (ya) and the binary vector is taken as the new output 
(yt). Also, the predicted power for solar or wind is min-max renormal
ized to fit between the maximum (Cmax) and minimum capacity (Cmin) of 
the facility, constraining the prediction to fall out of the physical ca
pacity range. 

yt = ya ∗ B (6) 

These 3 steps complete the DAZLS strategy in using domain data, 
metadata and physical constraints sequentially to achieve zero-shot 

learning in incomplete-information substations. The base model for 
DAZLS that was considered in this work consists of commonly used 
supervised learning models including random forest regression, K- 
neighbors regression, multi-task lasso with internal cross-validation and 
partial least squares (PLS) with internal cross-validation. These base 
models were chosen with consideration of the balance between inter
pretability and nonlinear modelling capabilities. Furthermore, to ac
count for historical dynamics in the data, a moving window is optimized 
within the pipeline and used to incorporate temporal information into 
all the base models. The window size of the mowing window is auto
matically optimized by validation. For validation of the substations, a 
substation-wise leave-out-out (LOO) approach [54] is used to cycle 
through each possible substation as the target block for the whole DAZLS 
pipeline. After considering a variety of base models and moving win
dows, a single best model is selected based on the prediction error to be 
used. 

3.5. Important pathway exploration via process PLS 

The Process Partial Least Squares (PLS) model [64] uses an inner and 
outer model for the supervised modelling of multi-block data. The 
Process PLS model is a multi-dimensional latent variable model that 
models explained variances (Р2) as effects between blocks in a directed 
acyclic graph structure. Each block of the data is modelled using a PLS 
model using the SIMPLS algorithm [65] and its network structure is 
similar to the PLS-PM (Partial Least Squares – Path Modelling Extension) 
model [66]. The Process PLS model has also been demonstrated to be 

Fig. 2. Overall methodology for data analysis and model construction.  
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useful for multi-block process modelling in improving conditional 
interpretability [67]. The details of the full algorithm can be found in 
Ref. [64]. 

In this work, Process PLS serves as a supervised learning method to 
explore the most important pathway that is related to the target sub
station of interest. We define an important pathway from Process PLS as 
the path which gives the most sum of explained variances (S (p)), which 
uses the least number of nodes (N (p)), both depending on the selected 
pathway. The Pareto efficient point was computed using the no- 
preference method [68] as follows. 

min
p

⃦
⃦f(p) − zideal⃦⃦ (7)  

s.t. p ∈ P  

f(p)=
[

S (p)
N (p)

]

, zideal =

[
1
0

]

Where p is the specific pathway, P is the collection of all the possible 
pathways, and the sum of explained variances (S ) is computed by min- 
max normalizing 

∑

p
Р2 between 0 and 1. The number of nodes across the 

selected pathway is N (p) can be obtained by counting the number of 
elements in the specific pathway, count(p) and min-max normalizing it 
similarly. This Pareto efficient pathway is the most important pathway 
to be studied for a specific substation, as it gives contributes to the most 
sum of explained variances using a small number of substations (data 
blocks). The most important pathway provides insight into the sequen
tial combination of substations that gives the most correlation in a 
parsimonious way. 

3.6. Greenhouse gas emissions 

The greenhouse gas (GHG) emission includes sources from solar 

Table 1 
Structure of metadata, input data and output data.  

Variable Rationale Data source Fall-backs 

Target Metadata 
Maximum 

Capacity of 
Solar 
Power 

The capacity of 
solar energy 
generation 
facilities is a 
physical aspect 
that is 
independent of 
weather, load and 
geospatial 
location. 

This metadata can 
be obtained from 
reported or 
engineering design 
documents of solar 
facilities and stored 
as a metadata table. 

This metadata can 
be estimated via an 
unsupervised 
learning algorithm. 
Directly removal 
still results in a 
functional 
algorithm. 

Minimum 
Capacity of 
Solar 
Power 

Maximum 
Capacity of 
Wind 
Power 

The capacity of 
wind energy 
generation 
facilities is a 
physical aspect 
that is 
independent of 
weather, load and 
geospatial 
location. 

This metadata can 
be obtained from 
reported or 
engineering design 
documents of solar 
facilities and stored 
as a metadata table. 

This metadata can 
be estimated via an 
unsupervised 
learning algorithm. 
Directly removal 
still results in a 
functional 
algorithm. 

Minimum 
Capacity of 
Wind 
Power 

Is Solar 
Power 
present? (1 
or 0) 

The target 
location might 
have suitable 
weather for solar 
generation, 
however, no 
physical facility 
was built there. 

The existence of 
solar generation 
facilities can be 
identified from the 
facilities connected 
to the grid in the 
substation region. 

If this metadata is 
not provided, a 
prediction for solar 
power will always 
be made. 

Is Wind 
power 
present? (1 
or 0) 

The target 
location might 
have suitable 
weather for wind 
generation, 
however, no 
physical facility 
was built there. 

The existence of 
wind generation 
facilities can be 
identified from the 
facilities connected 
to the grid in the 
substation region. 

If this metadata is 
not provided, a 
prediction for wind 
power will always 
be made. 

Source Metadata 
Difference of 

Latitude in 
Substations 

The differences in 
the location 
latitude and 
longitude give 
geospatial 
correlation for the 
model. 

The latitude and 
longitude can be 
pinpointed using 
global positioning 
systems [57]. 

This metadata can 
also be obtained 
using other web 
mapping systems. Difference of 

Longitude 
in 
Substation 

The Variance 
of 
Historical 
Input Data 

The historical 
input data 
(weather and total 
load), and the 
historical variance 
is used as an 
additional feature 
to gauge how 
noisy the 
substation is. 

This is a feature 
engineering 
technique that can 
be performed on the 
input data. 

Directly removal 
still results in a 
functional 
algorithm. 

Standard 
Error of 
Mean in 
Historical 
Input Data 

The historical 
input data 
(weather and total 
load), and the 
historical 
standard error of 
mean are used as 
an additional 
feature to gauge 
how easily the 
substation 
deviates from the 
mean. 

This is a feature 
engineering 
technique that can 
be performed on the 
input data. 

Directly removal 
still results in a 
functional 
algorithm. 

Input Data 
Wind speed at 

the location 
The wind speed 
provides direct 
weather 
correlation to the 

This data can be 
obtained in near- 
real-time from the 
Royal Netherlands 

Other weather 
forecasting and 
monitoring services 
can be used.  

Table 1 (continued ) 

Variable Rationale Data source Fall-backs 

wind power 
generated. 

Meteorological 
Institute [58]. 

Irradiation at 
location 

Solar irradiation 
provides direct 
weather 
correlation to the 
solar power 
generated. 

This data can be 
obtained in near- 
real-time from the 
Royal Netherlands 
Meteorological 
Institute [58]. 

Other weather 
forecasting and 
monitoring services 
can be used. 

Total Load at 
location 

The total load at 
the substation 
involves 
renewables and 
non-renewables. 

This is a mandatory 
variable recorded in 
substations. 

Data extrapolation 
is possible, however 
highly not 
recommended. 

Hour-of-day This feature is 
used to quantify 
the day-night 
cycle in the 
region. 

Directly be obtained 
from a clock. 

External clocks can 
be used. 

Minute-of- 
Hour 

This feature is 
used to quantify 
the short-term 
dynamics within 
the hour. 

Directly be obtained 
from a clock. 

External clocks can 
be used. 

Output Data 
Solar Power 

Generated 
at 
Substation 

The solar power 
generated is used 
for target fitting. 

This variable is only 
available for 
information- 
complete 
substations. 

Not provided for 
incomplete- 
information 
substations. 

Wind Power 
Generated 
at 
Substation 

The wind power 
generated is used 
for target fitting. 

This variable is only 
available for 
information- 
complete 
substations. 

Not provided for 
incomplete- 
information 
substations.  
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energy, wind energy, natural gas and coal. The carbon intensity for the 
non-renewable average is taken from the Ecoinvent 3.5 database [69] 
and re-averaged using relative energy fraction from CE Delft’s report to 
the ministry of infrastructure and water management [70]. 

The misestimates in carbon avoidance (MCA) due to generating re
newables as opposed to non-renewables are calculated as follows: 

MCA=(yt − yt
′) • (CENA − CE) (8)  

In which CENA is the carbon emission related to the non-renewable 

average in the Netherlands, y is the ground truth output variable 
(wind and solar power generation), y′ is the predicted output variable, 
CE is the corresponding carbon emission from Table A1. 

4. Results 

4.1. Substation explorative covariance analysis 

From Fig. 4(a) the network representation of the shrinkage covari
ance estimator is presented in an undirected graph of the substations. 

Fig. 3. (a) Illustration of the zero-shot learning problem for renewable energy quantification in an incomplete-information substation. (b) Diagram illustrating 
domain adaptation for zero-shot learning in sequence (DAZLS) approach. 

Fig. 4. (a) Shrinkage covariance estimator represented in an undirected graph. (b) The corresponding undirected graph on a geospatial map.  
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The covariance estimator represents the tendency for the data within the 
substations to vary together. The number beside the nodes of the 
network represents the variance of the PC1 in the substation. The cor
responding network is embedded on a geospatial map to demonstrate 
the effects of location in covariance (see Fig. 4(b)). From Fig. 4(a, c), it is 
observed that NRYN, HAL and WWF have high variance in the sub
stations. However, only NRYN and WWF had larger covariance with 
other substations. This highlights the importance of NRYN and WWF as a 
perfect-information substation for renewable energy reconciliation. 
From the geospatial location, it is expected that NRYN represents the 
variance due to inland weather dynamics of the country while WWF 
represents the combined variance at the Ijsselmeer reservoir and also 
from the North Sea. The substation HAL captures the variance of the 
Northern part of the country near the North Sea, however, other sub
stations do not share such characteristics leading to lower covariances 
across other substations. There is also large covariance between WEW 
and WHF, in which they are located close to each other geospatially. In 
general, PCA-Ledoit Wolf has shown that variables within substations 
have direct covariance between each other which is caused by geospatial 
influence, including weather effects. 

4.2. DAZLS and models for zero-shot renewable prediction 

In Fig. 5(a), the standard deviation of the error (RMSEP) and mean of 
error are plotted to represent the variance-bias trade-off. It can be 
observed that the models that were using DAZLS had much better 
(lower) standard deviation and mean of error compared to the same 
models (without applying DAZLS). Models with DAZLS applied had a 
mean of error with a range between 0.07 and 0.18 (7–18%) while that of 
the same models via default transfer learning was at around 0.71 to 0.73 
(71–73%). The standard deviation of errors is plotted in log-scale (due to 
models with DAZLS being too much better than the normal transfer 
learning model), having models using DAZLS with a standard deviation 
under 0.01, while that of the normal models around 0.009 to 0.025. 

The application of DAZLS has also removed unnecessary nonlinearity 
from the base models by separating the task of domain modelling, 
adaptation modelling and physical corrections (see Figure (b)). The top 
20 methods with DAZLS applied were plotted in Fig. 5 (c), and the less 

complex model (i.e. K-Neighbors Regression) was performing better 
considering the sum of RMSEP. Although the nonlinear method started 
to show up as the 5th best method, the first 4 methods all consist of K- 
Neighbour Regressions with varying window sizes. The usage of DAZLS 
simplifies the need for nonlinearity in zero-shot learning for renewable 
energy prediction in substations. 

The best model (1-KNeigborsRegressor-KNeighborsRegressor) from 
Fig. 5(b) was further compared to an open-source unsupervised learning 
model, the energy splitting model in the OpenSTEF software package 
[56] for the same dataset using block-wise leave-one-out validation. 
From Fig. 6(a) it can be observed that the best method from DAZLS 
significantly outperforms the openSTEF method where all predictions 
from DAZLS were below 0.15 RMSEP. OpenSTEF had predictions around 
0.2 to 0.3 RMSEP when stable, however, the prediction shoots up to very 
large values for stations that are not easily predicted. It is also worth 
mentioning that openSTEF is an unsupervised decomposition method 
instead of a one-shot learning method. 

The model prediction errors for the best method of DAZLS were 
further studied by embedding the geographical contour map onto the 
elevation map of the Netherlands (see Fig. 6(b)). It can be seen that the 
prediction error forms a peak (yellow lines) in the middle, forming a 
higher error area between 0.12 and 0.135. This region of the 
Netherlands has a negative Normal Amsterdam Level (NAP) elevation 
and is also highly affected by the weather from the Ijselmeer reservoir. 
Predictions were becoming more accurate the further the substation is 
away from this inaccuracy region (orange-yellow lines). 

Nevertheless, we can still observe that some of the substations are 
still less accurately predicted than others. Looking at Fig. 6(a), although 
the best method using DAZLS was low on average (blue bars), the sub
stations LLS, HFDP and OWD had relatively higher prediction RMSEP 
than other stations. Two predictions from solar in WHF (Fig. 7(a)) and 
wind in WWF substation (Fig. 7(b)) prediction are shown to demonstrate 
easy-to-predict cases, while solar from OWD and wind from LLS sub
station were demonstrating difficult-to-predict cases. 

For the difficult-to-prediction substations, the main misprediction 
was in the prediction of the peaks in the time series, this is a generic 
artefact for models predicting time series in real-time. Furthermore, it 
can be also identified that the variances in difficult-to-predict 

Fig. 5. (a) Standard deviation of root mean squared error of prediction (RMSEP) against the mean of RMSEP for models using DAZLS and without DAZLS (b) Applied 
scheme of the DAZLS framework with base models within. (c)Top 20 methods out of 80 models using DAZLS sorted by sum of errors from bottom to top. The name of 
the models was structured as (window size)-(domain model)-(adaptation model). 

S.Y. Teng et al.                                                                                                                                                                                                                                  



Renewable and Sustainable Energy Reviews 186 (2023) 113662

9

substations were significantly larger than that of the easy-to-predict 
stations. Although variance correction was already included in the 
DAZLS framework, some prediction performance in such difficult-to- 
predict substations was inevitably inflated by the prediction variances. 

4.3. Critical pathway exploration for difficult-to-predict substations 

For the LLS substation (see Fig. 8(a)), the most important pathway 
comes from north to south in a sequence of HAL, MNZL, and WWF to 
LLS. This suggests that LLS is affected by weather dynamics from the 
North Sea (from HAL), and also affected by substations that are nearby 
the reservoir region. In Fig. 8(b), it can be observed that the renewable 
energy generation in the HFDP station has a pathway from HAL, MNZL, 
LLS, NRYN, and OWD to HFDP. This long sequence suggests that the 
HFDP substation has a more complex relationship with the other sub
stations. This suggests that the HFDP substation is affected by weather 
dynamics from the North Sea (from HAL), and also shares similarities 
with inland substations which are equally distanced from the reservoir 
region (NRYN, OWD). Furthermore, the LLS substation was within the 
most important pathway of the HFDP substation, which itself is also a 
difficult-to-predict substation. This creates more uncertainty and vari
ance in the HFDP substation. Next, the OWD substation (Fig. 8(c)) also 
has a most important pathway that starts from HAL. The full pathway is 
HAL, HFDP, WHF, and OWD. The pathway is very similar to that of 
HFDP, however, WHF was selected instead of substations far down 
South. WHF and OWD are quite similar in latitude, which provides 
reasoning on why it is on the path of most explained variance. 

In general, the difficult-to-predict stations have the most up north 
substation (HAL) as the starting node of their most important pathway, 
suggesting that their energy generation might be related to the weather 
due to the North Sea. Furthermore, two of the difficult-to-predict sub
stations (HFDP and OWD) have each other on their most important 
pathway. This might suggest that there is some effect on renewable 
energy generation that both input data and metadata cannot capture. 
Nevertheless, the prediction accuracies resulting from the best model 
using DAZLS can outperform non-one-shot-learning (typical transfer 
learning) approaches and even commercial models. 

4.4. Improvement in environmental impact reconciliation 

From utilizing the best method of DAZLS, the difference between 
cumulative misestimates in GHG emissions with respect to other 
methods using DAZLS, methods without DAZLS and unsupervised 
openSTEF method was compared in Fig. 9(a). Overall, the method 

applying DAZLS significantly provided lower misestimates in GHG 
emissions compared to models without using DAZLS. Normal machine 
learning models (without DAZLS) were also performing generic transfer 
learning by default. Hence, they give lower misestimates in GHG emis
sions when compared to the openSTEF method, which was based on 
unsupervised decomposition. The best method applying DAZLS gave a 
24 times lower cumulative MCE than the generic transfer learning 
method (without DAZLS) and 706,436 times lower than when compared 
to the unsupervised openSTEF energy splitting method. 

For the MCA from using renewables (as opposed to non-renewables), 
all the values were positive, which meant that prediction models were 
constantly under-estimating MCA values. Underestimation of MCA 
values meant that GHG values avoidance due to renewables were not 
properly accounted for, seemingly giving higher GHG emissions. The 
best method using DAZLS had a monthly average MCA of between 0 and 
130 tons CO2-eq/month (Fig. 9(b)). The openSTEF method was stable in 
a few substations but had large spikes up to 5 × 106 ton CO2-eq/month. 
The percentage improvement in MCA by using DAZLS with the open
STEF as a basis is illustrated in Fig. 9(c). There are very large 
improvement possibilities (close to 100%) for substations of OWD, WHF, 
LLS, and HFDP, despite OWD, LLS and HFDP being listed as difficult-to- 
predict substations. Interestingly, the substation HAL and MNZL which 
were highly influenced by the weather in the North Sea did not have 
much potential improvement in MCA. Other substations ranged between 
30% and 50% improvement in MCA. 

5. Discussion 

The proposition of DAZLS allows for reliable renewable predictions 
in substations with fully missing renewable energy data. This allows for 
new possibilities for renewable energy-related applications in near real- 
time frequencies. The direct impact is that near real-time renewable 
energy quantification in any substations within the boundary is fully 
possible with appropriate perfect-information substations acting as 
standard [40], global weather prediction services [72], and geograph
ical information systems [73]. 

5.1. Reconciliation for digital twins in smart grid 

In general, the new approach allows for various applications 
requiring scalable renewable data from the substation level. From the 
results of our work, we estimate that previously unpredicted or poorly 
predicted missing data substations will have at least a 10-fold 
improvement in terms of performance. This provides accurate 

Fig. 6. (a) Comparison of RMSEP for best method from DAZLS and openSTEF energy splitting. (b) Contour map of model error embedded onto an elevation map of 
the Netherlands. NAP of the Netherlands adapted from Blom-Zandstra et al. [71]. 
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quantification for previously unknown renewable energy generation in 
near-real time resolution. Our method directly allows for a near-real 
time digital twin of region-wide renewable energy production at the 
substation level, provided that there are a few perfect information 
substations in the region. Improved renewable data prediction also 
provides additional value for reliable grid control [74]. This gives im
provements in optimal demand side management, renewable energy 
dispatch, resolving grid conflicts, provide grid autonomy [75] for smart 
grid and intelligent systems. Nevertheless, the integration of such 
models remains an unexplored expedition and it allows for various ap
plications related to smart cities [76], applications of digital twins [15], 
energy management systems [77], etc. Our work provides the basis of a 
transferable region-wide digital twin for renewable energy prediction, 
providing accurate control and optimization for the grids of the future 
and unlocking various peer-to-peer (P2P) prosumer networks [78]. 

Energy planning is essential towards the long-term development of 
climate-resilient smart cities [79], industrial symbiosis [80], and cir
cular urban metabolism [81]. Different energy planning models rely on 

data accuracy to address temporal features, stochastic variability, 
epistemic uncertainties, multi-objectivity and multi-agent problems 
[18]. Holistic methods such as carbon emission pinch analysis (CEPA) 
[82] can benefit from improved grid information for renewable energy 
prediction from DAZLS, thus giving more understanding of renewable 
energy planning at the substation level. The improved time resolution of 
DAZLS can also provide near real-time analysis for time-dependent en
ergy planning tools such as Power Pinch Analysis (PoPA) [83], which 
previously only relied on hourly time interval data. Multi-criteria stra
tegies for energy planning [84] can also capture more variance of the 
high-frequency prediction data from DAZLS, relating to more critical 
multi-objective energy planning. 

5.2. Environmental implications 

For environmental impact quantification, the near real-time predic
tion allows precise and dynamic quantification of GHG that is avoided 
by using renewables as opposed to non-renewables. This opens up a 

Fig. 7. Actual and DAZLS best model prediction for (a) solar energy generation in WHF substation, (b) wind energy generation in WWF substation, (c) solar energy 
generation in OWD substation, and (d) wind energy generation in LLS substation. 
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Fig. 8. Critical pathway and its corresponding geospatial map for (a) LLS, (b) HFDP, (c) OWD as the target substation.  
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bottom-up data-driven reconciliation for GHG produced by renewables. 
As the renewable energy predicted directly affects the energy payback 
time for LCA [85], substation level prediction information will be an 
additional consideration for system-level GHG basis in renewables 
quantification [86,87]. Furthermore, the incorporation of DAZLS can 
also include substation-level information in dynamic carbon accounting 
in regional energy markets [88]. In such cases, more accurate quantifi
cation of GHG emissions due to renewable energy can directly affect 
policy-making [89], energy resilience [90], and energy security [91]. 
This will also provide clearer targets for regional pathways toward 
United Nation’s 2050 GHG emission goals [92]. 

5.3. Pros, cons and future perspectives 

DAZLS provides a low-cost strategy to transfer information from 
perfect-information substation to imperfect-information substations 
without additional sensors installed. Additionally, this approach also 
avoids any data confidentiality issues between stakeholders [93], 
reducing any security risks. This implies that any substation without 
renewable energy sensors can still have an accurate prediction in 
near-real time resolution by utilizing load-weather information, geo
spatial metadata, weather metadata, and physical data. The region of 
study is also scalable, and DAZLS can be extended to a global scale to 
monitor global renewable energy production. DAZLS can be transferable 
to any other countries or expanded to a wider region (e.g. whole Euro
pean Union) since the strategy is model-agnostic. A limitation of DAZLS 

is that it relies on consistent weather information being provided in 
real-time. Disrupted weather information or low time frequency 
weather information likely lowers the prediction accuracy of DAZLS. 
Nevertheless, there are many weather data streaming services that are 
reliable and readily available [94,95]. 

For future applications, the incorporation of automatic global sub
station detection via satellite can be deployed to detect all the sub
stations of interest [96]. This would directly allow the detection and 
prediction of all substations within a large region. As aforementioned, 
DAZLS will also serve as a flexible base model for energy digital twins, 
allowing for more efficient grid control, energy management, and 
long-term energy planning. The environmental impact due to more 
precise quantification of renewable energy will also directly influence 
many LCA-related purposes, policy-making and sustainability measures. 
As the way forward, more countries should gather near real-time or 
real-time data from perfect-information renewable energy. This would 
allow DAZLS to enlarge the effective prediction region, and provide 
accurate renewable energy quantification globally. 

6. Conclusions 

In conclusion, we developed an effective procedure to improve any 
basic machine learning model for zero-shot renewable energy prediction 
in incomplete information substations. The proposed technique is called 
domain adaptation for zero-shot learning in sequence (DAZLS) in which 
input data and metadata are sequentially assigned to a domain model, 

Fig. 9. (a) Average misestimates in GHG emissions of substations over time due to using openSTEF, other methods with DAZLS, best method with DAZLS and 
methods without DAZLS (b) Average misestimates in carbon avoidance (MCA) (renewables from non-renewables) in different substations of openSTEF and the best 
method applying DAZLS. (c) Percentage improvement potential (rounded to 2 decimals) in a geospatial map for the best method using DAZLS with openSTEF as 
a basis. 
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adaptation model and physical correction model. By testing DAZLS on 
commonly used machine learning models, it was found that DAZLS re
duces the mean of prediction error by 4 times and the variance of pre
diction error by 3 times. DAZLS favours simple algorithms because the 
task of mapping the domain data and metadata has been separated into 
two models of different functionality. This reduces the need for highly 
nonlinear methods. For unsupervised substation interpretation, this 
work also proposed using a PCA-combined Ledoit-Wolf shrinkage 
covariance estimator to explore the underlying nature of the renewable 
energy generation within various substations. Difficult-to-predict sub
stations can also be explored using a supervised learning approach using 
process PLS and studying a parsimonious pathway with the highest sum 
of explained variances. The implementation of the best model using 
DAZLS has also provided 24 times lower cumulative misestimates in 
GHG emissions when compared to generic transfer learning models, and 
700 thousand times lower than when compared to an open-sourced 
unsupervised energy splitting method. The possibility of using DAZLS 
with any data-driven models allows for scalable improvement in carbon 
avoidance estimation due to using renewables as opposed to non- 
renewables, ensuring a more informative and resilient energy transi
tion aimed towards sustainability. For broader practical applications, 
DAZLS provides a cornerstone for region-wide energy digital twins by 
providing accurate predictions in incomplete-information substations 
without the need to invest in additional power meters. The benefit of 
using DAZLS is that the strategy is model-agnostic, so any specific data- 
driven models of preference can be incorporated into the application. 
Furthermore, DAZLS can also be extended to any region without major 
modifications. The main requirement is that information from repre
sentative perfect-information renewable energy substations and real- 
time weather information needs to be provided for the algorithm to 
perform optimally. These conditions are frequently found in the elec
tricity grids of numerous countries, and if not already present, they can 
be established at considerably reduced investment expenses. Thus, the 
usage of DAZLS can act as a cheap and effective building block for ac
curate renewable energy information prediction. 
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