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A B S T R A C T   

The building sector accounts for over one-third of global energy consumption and a significant share of carbon 
emissions. Improving building energy efficiency, particularly in the tropics, where most of the future develop-
ment is foreseen, is thus crucial. One of the main factors that determine building energy performance is the 
building envelope. This paper presents a comprehensive review of the impact of several envelope design vari-
ables, such as thermal, optical, physical, and geometrical, on the energy performance of buildings in the tropics. 

A correlational analysis that elaborates on the effectiveness of each of these measures is discussed in detail. 
The findings indicate that insulation, glazing properties, and Window-to-wall ratio (WWR) are promising solu-
tions for improving energy efficiency in tropical buildings. Among these, insulating the building envelope has the 
most significant impact on energy savings. The variables of building orientation and the thermal mass of building 
materials have the least influence on total energy consumption. The latter exhibits complex effects in regions 
characterized by hot-humid climates. An optimized design in cooling-dominated climates should have a large 
aspect ratio, a higher WWR in the north and south facades, and an ideal shading system. With all variables 
combined and appropriate ventilation, a building can save 35% of annual energy and up to 60% in some cases. 
This study further reveals that available research on the effect of building shape and the context of surrounding 
built environment on energy consumption remains limited.   

1. Introduction 

According to the United Nations Framework Convention on Climate 
Change (UNFCC), addressing building energy efficiency for emission 
reductions is essential to attaining the goals of the Paris Agreement [1]. 
COP 26 (2021 United Nations Climate Change Conference) also em-
phasizes that buildings play a critical role in climate action, stressing the 
need to reduce emissions by 50% by 2030 and recommending that new 
buildings be net-zero in terms of operations by 2030 [2]. The recently 
launched Intergovernmental Panel on Climate Change (IPCC) report also 
underscores the buildings’ potential to achieve Sustainable Develop-
ment Goals [3]. 

All of this is in agreement with the assessment that buildings account 
for more than one-third of global energy demand and more than three- 
quarters of global greenhouse gas emissions related to energy [1]. 
Building operations alone are responsible for more than 55% of global 
electricity [4]. The International Energy Agency (IEA) indicates that if 
more energy-efficient solutions are not found, the building sector will 
generate an increased energy demand of 30% by 2060. Substantial 

economic and environmental advantages could be realized by 
improving the sector’s energy efficiency. 

In the context of rising global average temperatures and growing 
reliance on electro-mechanical systems for space cooling, the potential 
for reducing energy demand lies in improving the upcoming building 
stock in the expanding hot regions [3,5]. Given the region’s rapidly 
emerging building sector, improving building energy efficiency in the 
tropics is becoming increasingly important. 

According to the literature, a variety of variables contribute to the 
dynamic rise of energy consumption in buildings [6]. The building en-
velope is critical in determining energy efficiency in buildings [7–9]. It is 
the shell of the building that acts as a barrier between the conditioned 
indoor and outside environment. It accounts for 50–60% of heat ex-
change and can result in 26% of the total building load due to heat gain 
and 36% of the peak cooling loads in cooling-dominated climates like 
India [10–12]. The energy performance of different envelope 
components-walls, floors, roof, ceilings, windows, etc., affects the en-
ergy required for building heating and cooling, indoor comfort, venti-
lation, and natural lighting [13]. Its design variables, such as geometry, 
insulation, reflectance, thermal mass, shading, etc., affect energy 
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performance. Improving these design factors can result in a 46.8% 
reduction in yearly space-cooling energy consumption in hot climates 
[14]. 

Several researchers worldwide have analyzed building envelope 
variables for improvements in building energy consumption. Thermal 
and optical properties like thermal capacity, insulation, color, and 
reflectance can reduce the yearly cooling loads by up to 38% in tropical 
regions [15–17]. A study for a semi-arid climate reported more than 
50% annual energy savings through insulation, reflective paint, 
low-emissivity (low-E) glazing, and shading [18,19]. Improvements in 
these measures offer the ability to enhance indoor comfort levels by 
moderating indoor temperatures [20,21]. Optimizing the building en-
velope also affects HVAC systems, energy loads, and associated costs 
[22]. Many review studies assemble optimization of the energy perfor-
mance of the new or existing buildings. Nonetheless, no comprehensive 
overview of strategies for enhancing energy efficiency in tropical 
buildings exists. The following section overviews past studies on 
building envelope design in the tropics. 

1.1. Summary and gaps 

1.1.1. Advances in research 
A wealth of studies have investigated building energy performance 

based on several envelope design considerations. The most examined 
variables include insulation, reflectance, window wall ratio (WWR), 
glazing types, shading devices, type of walls and roof assembly, venti-
lation mode, and orientation [14–17,22–32]. While some authors limit 
their analysis to a few roof or wall, others consider the whole building to 
produce a more realistic view [33]. The authors have presented meth-
odologies and optimization approaches and highlighted the importance 
of active and passive design strategies to minimize cooling loads across 
climatic regions. 

In recent times, an increasing body of research has focused on 
investigating the energy efficiency of buildings situated in tropical re-
gions [17,22,23,31,34–39]. A handful of novel inquiries have sought to 
evaluate energy efficiency based on building shape [40–43,43–45]. 
Fig. 1 demonstrates the growing interest in improving the building en-
velope in the tropics. The trend highlights the rising importance of this 
issue post-2000. Fig. 2 provides an interesting peak into the type of 
building envelopes investigated in the tropics. As masonry and concrete 
remained the most popular envelope types over the years, glazing has 
received increasing attention over the past decade only, particularly for 
double-skin facades [39,46–49]. Even within masonry, brick and 

concrete blocks continue to receive the most attention (79%), followed 
by stones (4.52%), compressed earth blocks (3.95%), and hollow bricks 
(3.39%), as illustrated in Fig. 3. It is interesting to note that studies on 
sustainable envelopes like adobe, timber, and bamboo and conventional 
systems like semi-transparent photovoltaics have become prevalent in 
recent years [50–56]. As shown in Fig. 4, more attention has been given 
to residential buildings (49.2%), followed by offices (28.8%) and 
educational (11%). However, the literature reviews on building enve-
lope in the tropics are less numerous. 

1.1.2. Previous reviews 
The reviews to date have ascertained the impact of varying envelope 

design variables for heating and cooling-dominated climates and 
captured energy improvements in buildings through the lens of retrofit 
measures [29,57]. Sarihi et al. reviewed different façade retrofit mea-
sures, such as energy conservation measures (ECM) and energy modu-
lation measures (EMM), for minimizing energy demand in both cooling 
and heating-dominated climates [29]. While ECMs prevent excessive 
heat transfer through insulation, WWR, and infiltration, EMMs alter 
energy usage through design strategies like shading, coatings, etc. [29, 
58]. Reviews discuss decision-making models for energy performance 

List of abbreviations: 

Acronyms 
ECC Eta Correlation Coefficient 
ECM Energy Conservation Measures 
EMM Energy Modulation Measures 
HVAC Heating, Ventilation, and Air Conditioning 
Low - E Low Emissivity 
OE Operational Energy 
PCM Phase Change Material 
PVR Passive Volume Ratio 
R-value Thermal Resistance (m2K/W) 
SC Shape Coefficient 
SP Shape Proportion 
SHGC Solar Heat Gain Coefficient 
UAE United Arab Emirates 
U-value Thermal Transmittance (W/m2K) 
W/L Aspect Ratio or width-to-length ratio 
WWR Window Wall Ratio 

Measures 
Ɛ Emittance 
μ Reflectance 
α Absorptance 
Q Heat (J) 
m Mass (Kg) 
c Specific Heat Capacity (J/Kg-K) 
C Thermal Capacity (J/K) 
ΔT Temperature Change (K) 
Φ Heat flow rate (W) 
λ Thermal Conductivity (W/mk) 
A Cross-sectional Area (m2) 
d Thickness (m) 
R Thermal Resistance (m2K/W) 
k Thermal Transmittance (W/m2K) 
U Thermal Transmittance of window assembly (W/m2K) 
Rse External Surface Resistance (m2K/W) 
τ Direct Transmittance  

Fig. 1. Number of documents published per year.  
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optimization in buildings and software tools for energy simulation 
[59–61]. Kheiri provided an extensive overview of state-of-the-art 
methods for optimizing building energy through envelope design [60]. 

A recent string of review studies underscores the importance of 
several physical and thermal factors for improving energy efficiency. An 
exhaustive set of these variables reviewed in cold, warm, and hot 
climate conditions include building orientation, shape, envelope sys-
tems, insulation, heat capacity, and thermal mass [12,33,61–63]. For 
example, Sadineni et al. covered advancements in fenestration, walls, 
and roof types for cold regions in the United States and the United 
Kingdom and hot climates of South Asia and the Middle East [61]. 

With the growing interest in net zero energy buildings, the design 
strategies in terms of renewable energy and other technologies and 
EEMs have also started gaining traction [36]. Feng et al. put together the 
energy performance in net-zero energy buildings in hot and humid re-
gions [64]. The study found intensive use of passive design technologies 
for net zero buildings. 

Additionally, several other reviews focus on region-specific and 
contextual climate studies. Friess & Rakhshan focused primarily on 
United Arab Emirates (UAE) and confirmed the effect of the passive 

envelope design on the energy required [65]. Ma & Wang reviewed 
research on building energy efforts in Hong Kong [66]. It highlights 
energy-saving measures, including policy, design, and renewable energy 
systems. The effects of building form and factors like roof and wall type 
and WWR have also been reviewed for the tropical climate of Malaysia 
[48]. Other reviews include studies focusing on specific variables. These 
include shading devices, ventilation strategies, and building insulation 
materials for varying climate zones [12,20,21,67,68]. 

The collective findings of these studies offer valuable perspectives on 
enhancing energy efficiency in buildings through optimizing envelope 
design parameters across various climatic scenarios or through the 
proposition of retrofit strategies for pre-existing structures. 

1.2. Novelty of the review 

A variety of reviews examining building envelope design strategies 
and variables, along with retrofit measures for minimizing energy use, 
exist in the literature [21,29,36,59,61,63,67,69–71]. The reviews 
documented the effect of measures like ECMs, EMMs, passive and active 
design techniques, natural ventilation, PCM, shading systems, 

Fig. 2. Number of publications in the tropics based on the type of building envelope.  

Fig. 3. Distribution of the types of masonry-based envelopes investigated in the tropics. The numerical values on x and y axis are to be used to measure the area of 
the rectangle for a particular material. The percentage share of each envelope material can consequently be obtained as follows- (area of rectangle/100) 
Notes: The labels cement, flyash, gypsum, concrete and tuff in the figure refer to masonry blocks. AAC- Autoclaved Aerated Concrete block; CSEB- Compressed 
Stabilized Earth Block. 
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insulation, thermal inertia, facade types, etc., on energy consumption in 
a particular country (or region) or climate or for different climatic types 
[20,33,48,58,65,66,70,72]. Some reviews also focus on the climatic 
design and indoor thermal comfort, however, they do not discuss the 
effect of envelope design [73,74]. 

It is to be noted that since the previous reviews, many authors have 
started investigating the impact of a larger number of envelope design 
variables on building energy performance in several countries across the 
tropics [11,18,20,23,47,75–80]. However, prior reviews have not pro-
vided a comprehensive and detailed discussion of the studies that 
investigate the effect of the building envelope in countries across the 
tropics as a whole. Additionally, no attempt has been made to review the 
existing literature on the impact of building shape on energy 
performance. 

To enhance our understanding of the tropics, it is imperative to 
comprehend the historical evolution of trends influencing energy con-
sumption in buildings in these areas. This review paper summarizes and 
assesses the current body of knowledge that discusses the effect of 
building envelope on energy consumption in the tropics. It will provide 
an improved understanding of the variables and building components 
that are most effective in improving energy performance in such a 
climate. 

The tropics are defined as areas located between the northern lati-
tude of the Tropic of Cancer (about 23◦26′ North) and the southern 
latitude of the Tropic of Capricorn (approximately 23◦26′ South). Its 
major climatic types as per the Köppen-Geiger classification (Fig. 5) 
include Tropical rainforest climate (Af), Tropical monsoon climate 
(Am), Tropical wet and dry or savanna climate (Aw), tropical and sub-
tropical desert climate (BWh, part of BWk) and Mid-latitude steppe and 
desert climate (BSh) [81]. There are also patches of Type C climate- 
Humid subtropical climate (Cfa) and Monsoon-influenced humid sub-
tropical climate (Cwa). While type A climate is characterized by a mean 
monthly temperature of more than 18 ◦C throughout the year and large 
amounts of direct solar radiation, type C climate in the tropics exhibits 
warm and moist conditions with mean daily temperatures ranging from 
30 ◦C to 38 ◦C. Type B climate shows low precipitation and intense solar 
radiation [82,83]. 

The research further suggests that the shape of a building plays a 
crucial role in determining energy savings. However, this factor has only 
begun to gain attention in the last decade. With the advent of several 
capable advanced computational building energy modeling and simu-
lation tools, studies have suggested methodological approaches for 
determining thermal performance and energy consumption for different 
building shapes. With this backdrop, the review also proposes collating 
the state-of-the-art developments on shape in hot and cold climates, 
representing a further novel contribution of the study. 

2. Literature review 

A comprehensive literature study was done using three databases- 
Scopus, Google Scholar, and ScienceDirect without limitation of the year 
of publication. However, the literature shows that related studies were 
published majorly between 1998 and 2021. The search was based on the 
existing studies’ title, abstract, and keywords. A combination of the 
following keywords was used- ‘building envelope’, ‘tropics’, ‘hot 
climate’, ‘thermal performance’, ‘comfort’, ‘façade’, ‘building energy’, 
‘cooling loads’, ‘shape’, ‘geometry’, ‘energy efficiency’ and ‘energy 
consumption/demand’. The identified papers were screened based on 
the relevance of the title, followed by the abstract and area of study or 
climatic zone. Following this, papers found appropriate for this paper’s 
scope were identified. Additionally, the relevant references mentioned 
in these papers were also checked based on the criteria mentioned 
earlier. 

Several conditions were applied during the screening process. The 
studies had to be based in the tropics and assess more than one envelope 
design variable. The prime objective included building energy perfor-
mance/demand/consumption or indoor comfort. The search method-
ology for identifying the relevant literature is demonstrated in Fig. 6. 

The content in the following sections is organized as follows. Sec-
tions 2.2, 2.3, 2.4, and 2.5 comprehensively review recent studies on 
different envelope properties and associated design variables. Section 3 
summarizes the entire literature and assesses key envelop design vari-
ables, followed by the conclusion in section 4. 

2.1. Building envelope 

The effectiveness of the building envelope is determined by the 
thermal, physical, and optical characteristics of its components in 
addition to building geometry [29,41,48]. These properties significantly 
affect indoor thermal comfort and building energy consumption [58, 
84]. Insulation, window properties, and air exchange are critical in cold 
climates [6]. Optimizing these properties in tropical climates can be 
difficult due to high daytime temperatures [23,48,85]. Determining 
their appropriate significance in the tropics influences energy savings 
[86,87]. 

The study in the following section summarizes several façade and 
envelope design variables into four categories, as shown in Fig. 7. 
Detailed consideration is given to building shape and related metrics. 
The derived categories include 1) Thermal properties, 2) Optical prop-
erties, 3) Physical properties, and 4) Geometry. 

2.2. Thermal properties 

The building energy loads and temperature of indoor air and enve-
lope surface depend on factors like the outdoor air temperature, solar 
radiation, and optical and thermal properties of the envelope [88]. 
Thermal properties are characterized by insulation and thermal mass 
[18,33,63]. Insulation is determined by the thermal resistance or 
R-value (m2K/W), thermal conductivity (W/mK), and thermal trans-
mittance or U-value (W/m2K) [89]. Suitable insulating materials can 
reduce energy consumption by slowing down the rate of heat flow into 
building mass by conduction [90]. They exhibit low thermal conduc-
tivity compared to commonly used construction materials. 

Thermal mass is the total mass of all building elements and affects 
the energy storage capacity of the material. It depends on thickness, 
density, and specific heat of wall, roof, and floor [33,90]. There is no 
significant reduction in the overall thermal gain per day, however, it 
causes a time lag and a reduction in peak heat flow as a result. High 
thermal mass helps delay and reduce indoor peak air temperature and 
reduces the energy consumed in the tropics. The impact is pronounced in 
a substantial diurnal fluctuation in air temperature [33,61]. It depends 
on material properties, orientation, and ventilation [91]. 

Fig. 4. Distribution of types of buildings analyzed in the studies conducted in 
the tropics. 
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2.2.1. Thermal transmittance (U-value) 
The basic physical mechanisms that facilitate heat transfer in 

buildings include conduction, convection, and radiation. Fourier’s law, 
or the law of thermal conduction, governs heat transfer by conduction. It 
states that heat flow rate (Φ) through a solid slab in steady state is al-
ways proportional to the cross-sectional area (A) and temperature dif-
ference (ΔT) and inversely proportional to the thickness (d) as shown in 
Eq. (1), where λ is called thermal conductivity. It depends on the slab 
material and is measured in W/mK [92]. 

Φ= λ
A(ΔT)

d
(1) 

The different layers of materials used in building components like 
wall, roof etc., are usually characterized by thermal resistance (R). It is 
the ratio of slab thickness to thermal conductivity as expressed in Eq. 
(2). It is the inverse of thermal transmittance. Thus, good thermal in-
sulators have low thermal conductivity. 

R=
d
λ

(2) 

While the total resistance is the sum of the resistances of the indi-
vidual material layers (

∑ d
λ), the U-value (k) for such a multilayered 

body is calculated as per Eq. (3). A low U-value for a material assembly 
would imply high resistance and thus good thermal insulation. 

k =
1

∑ d
λ

(3) 

The application of thermal insulation to reduce the U-value of the 
building envelope has been studied widely for both hot and cold cli-
mates [12,93]. It is the crucial factor impacting the demand for building 
energy [6,94]. Insulation in tropical regions, such as China, can reduce 
the annual cooling burden by up to 38% [16,95]. External wall insu-
lation alone can produce considerable energy savings in hot regions 
[88]. For example, using insulation in Dubai can deliver annual energy 
savings ranging from 23 to 35% [96]. 

It appears, however, that using insulation in hot regions has 
complicated effects [14]. Although insulation can lower the maximum 
daily daytime temperature by 6 ◦C, it should be noted that in tropical 
areas, the indoor air temperature at night may experience a rise of up to 
2.8 ◦C [91,93,97]. Highly insulated and airtight envelopes can increase 
the overheating risk [9,98–100]. While increasing thickness can be 
effective in heating-dominated buildings, it does not influence energy 
loads much in warmer climates [24,25,36]. A low U-value is not 
inherently associated with low energy consumption in such climates 
[101–104]. According to a recent study, high U-values in 
cooling-dominated climates produce more significant operational en-
ergy (OE) savings [12]. 

Meanwhile, in the arid desert climate of UAE, a decrease in U-values 
can result in a 2.6–19.3% reduction in cooling energy use [105,106]. 
Similarly, in Indian cities, lower U-values can lead to substantial energy 
savings of up to 50% [30]. Cooling loads decrease with a lower U-value 
and vice versa [89]. While increased insulation can curtail heat gain or 
loss through conduction, it is essential to note that over-insulation1 may 
inadvertently result in higher energy consumption [36]. Sen et al. report 
that higher insulation prevents direct solar gains from radiating back 
into the atmosphere at night [38]. Nevertheless, natural ventilation can 
counter the reverse effects of insulation and ensure comfortable night-
time conditions [91]. 

Such inconsistencies in energy consumption with an increase/ 
decrease in U-value in the tropics are associated with the type of glazing, 
mode of ventilation, the position of insulation relative to thermal mass, 
and the local climatic context [19,90]. For instance, combining double 
glazing with high insulation can cause overheating in the tropics, but the 
effect is more pronounced in desert and semi-arid climates [98,107]. 

Fig. 5. World Map highlighting the different climate types as per Koppen-Geiger climate classification dominant in the Tropics-the areas between the Tropic of 
Cancer in the Northern Hemisphere and the Tropic of Capricorn in the Southern Hemisphere. The map and color scheme were adopted from Ref. [83]. 

1 The thickness of insulation after which any further insulation would be 
counter-productive, i.e., could result in an overall increase in cooling loads is 
referred to as the point of thermal inflexion. 
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2.2.1.1. U-values and solar heat gain coefficient (SHGC). Windows 
considerably affect the thermal performance of the building envelope 
[108,109]. Heat exchange via glazing depends on properties like 
U-value, SHGC, and visual transmittance. The negligible thermal resis-
tance offered by the glass and the direct solar radiation affect the total 
energy a building consumes [7,110]. It is the sum of solar radiation 
absorbed by the glazing and then re-radiated indoors and the directly 
transmitted radiation (τ) as shown in Eq. (4), where U is the U-value of 
window assembly, α is the absorptance of glazing, and Rse is the resis-
tance offered by the external glazing surface [92]. 

SHGC=Uα Rse + τ (4) 

The transmitted gains form a significant share of indoor heat gains 
[111]. A high SHGC can result in overheating even with a low U-value 
opaque envelope [27]. SHGC2 is crucial in reducing cooling energy 
demand in the tropics [30,58]. Enhancing these characteristics also 
proves advantageous when considering structures with a high WWR 

Fig. 6. Schematic illustrating the literature search process. The process started with the identification of studies based on the listed criteria, followed by screening 
and snowballing to shortlist studies appropriate to the scope of this review. The search results presented around 250 papers, forming the basis for the present 
research work. 

Fig. 7. The four major properties of the building envelope and their design 
variables reviewed in the study. 

2 It is the fraction of the solar radiation that is absorbed by the building 
component and then transferred (re-radiated) to the internal environment and 
the solar radiation that is directly transmitted with respect to total incident 
solar radiation. 
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[92]. For a small WWR, however, even a well-insulated envelope can 
yield energy savings because of reduced solar gains [112]. 

For example, for a well-insulated envelope with a WWR of 20%, 
savings reduce as the window U-value changes from 1.95 to 0.68 W/ 
m2K, and SHGC increases from 0.1 to 1.68 [30]. While lowering the 
U-value for a WWR by more than 50% increases the cooling demand, 
reducing the SHGC decreases the total energy required by 18.4–29.7% 
[113]. A reduction in SHGC can also reduce peak indoor temperatures 
by up to 4.9 ◦C, reducing the daily cooling load by 34%. The higher the 
SHGC, the greater the increase in total energy use as a function of WWR 
for cooling-dominated climates [114]. Poorly insulated buildings, 
however, may show irregular patterns [113]. 

Many researchers have also examined the effect of U-value and SHGC 
under varying climatic conditions and shading types [113]. Friess & 
Rakhshan suggest a maximum window U-value of 1.9 W/m2K and a 
shading coefficient of 0.25 in the hot climate of UAE for WWR higher 
than 60% [65]. SHGC and shading are the most influential factors, with 
a 39% greater impact than other parameters. When supplemented with 
Low-E glazing, 10–20% energy savings can be achieved [65]. 

The literature thus ascertains that SHGC is more effective in 
decreasing the space cooling demand in well-insulated buildings, irre-
spective of window size [115]. The effect is, however, more pronounced 
for larger WWR. Lower U-values prove beneficial for low WWR. It in-
fluences heat gains, mainly when solar gains through windows occur 
during a minor part of the occupied hours [15]. It is worthwhile to point 
out that a lower SHGC reduces building energy consumption in hot 
summer regions but increases it in colder regions [116]. Empirical evi-
dence suggests that glazing for hot climates is Low-E, characterized by 
low values for both SHGC and U-values [52,117]. Table 1 discusses the 
variations in observed energy savings for different combinations of 
SHGC and U-value. 

2.2.2. Thermal mass 
Thermal mass is the ability of a material to absorb and store heat and 

progressively release it later. In addition to material density, it is ruled 
by the thermal capacity (C), that depends on mass (or thickness) and 
specific heat (c), as shown in Eq. (5) [33,90,118]. The amount of heat 
added (Q) is proportional to the mass of matter (m), specific heat ca-
pacity (c), and temperature change (ΔT) as shown in Eq. (6) [92]. The 
ability to absorb and store heat thus increases with an increase in mass 
and specific heat. 

C=m × c (5)  

Q=mcΔT (6) 

Further, as the thickness increases, the rate of heat flow reduces, 
resulting in a more significant time lag, as explained by Fourier’s law 
[92]. The greater thickness helps control indoor air temperatures by 
causing the internal surface temperature to change slowly and with less 
magnitude [89,90,119]. Most studies report that thermal mass improves 
indoor thermal comfort for most buildings and climate types [33,99, 

120–122]. As per Olsthoorn et al. it is associated with high-temperature 
cooling or low-temperature heating, implying that cooling/heating time 
extends over a longer duration [123]. 

However, it is essential to note that the effects of adding thermal 
mass are not straightforward. Though it appears to be more pronounced 
in warm and humid climates, a typical characteristic of the tropics, the 
literature reveals some discrepancies [124]. For the semi-humid climate 
of Brazil, high thermal mass can improve indoor thermal comfort and 
provide savings in cooling energy consumption [125]. The maximum 
indoor temperature reduces considerably with increased thermal mass 
[49,126,127]. Similar findings have been reported from studies con-
ducted in Kenya, Cairo, and Israel [128,129]. It can curtail the hours of 
discomfort caused by overheating by up to 7% in tropical regions like 
Cairo, Myanmar, and Thailand [99,130]. Reduction in indoor air tem-
perature by up to 4 ◦C and fluctuations by up to 0.9 ◦C is possible in hot 
and dry climates [91,131]. Increasing thermal mass can reduce energy 
consumption by 13.4% in UAE and peak cooling demand in Hong Kong 
by up to 60% [105,106]. 

In contrast, Leccese et al. argue that lighter construction with insu-
lation performs better [132]. Ren and Chen suggest that a lightweight 
envelope performs better only when the comfort criteria is lowered in 
tropical regions [133]. According to a study conducted in Thailand, 
thermally massive walls can reduce air-conditioning loads during the 
day. It can, however, be counterproductive at night [134]. While the 
indoor air temperature reduces with rising wall thickness, the mean 
temperature rises by 1.3 ◦C during nighttime [91]. Ralegaonkar et al. 
propose that humid climates with a limited diurnal range should avoid 
heavy mass construction. Lightweight construction performs better as it 
can be quickly cooled down [135]. The relatively low time lag reduces 
indoor nighttime temperature [136]. Similar findings have been re-
ported by studies conducted in regions like Cyprus (Köppen climate 
classification: BSh), Las Vegas (Köppen climate classification: BWh), 
Miami, and Phoenix (Köppen climate classification: Aw) that have 
similar climate characteristics as tropics. Increasing thermal inertia may 
result in a slight rise in cooling energy demand due to high indoor air 
temperatures. Authors attribute these observations to night-time venti-
lation and the use and position of insulation layer [137–139]. 

In a separate investigation, the researchers suggest that while 
employing lighter mass may reduce nocturnal cooling, an increase in the 
thickness of insulation could yield favorable outcomes [31]. Here, the 
impact of insulation overtakes the effect of thermal mass. However, 
beyond a certain thickness, the indoor environment remains uninflu-
enced by the outdoor thermal flux through building mass. Greater 
thicknesses may thus become less attractive due to less impact and 
higher costs [91]. High thermal mass can also create overheating when 
coupled with high insulation [140]. For instance, an increase in the 
thermal mass of an insulated wall in a sub-tropical climate can lower the 
demand for heating energy but require more cooling [138]. 

The inconsistencies are also linked to the level of thermal mass and 
placement of the insulation layer. The cooling loads can increase by up 
to 19% or reduce by 16%, depending on the thermal mass and the po-
sition of the insulation. Evidence suggests that insulation should be 
placed on the hotter side to maximize efficiency by minimizing heating 
of the thermal mass [89,106]. A peak cooling load reduction of 1.8% is 
possible by moving the layer to outside, irrespective of the thickness 
[17]. Insulation above the slab can take up to three times longer to 
transmit the same amount of heat [90]. Several studies confirm that the 
influence of insulation holds greater significance in tropical areas than 
thermal mass [33,49,91,120,124,132,137,141,142]. It is important to 
note that irrespective of the position of thermal mass, shading is crucial 
to block solar gains in the tropics [99]. 

The type of climate also influences the effect of thermal mass. For 
instance, in hot-arid desert climates subjected to high ambient temper-
atures and intense sunlight, thermal mass stores more heat than it can 
transfer back outside at night, resulting in discomfort in airtight build-
ings [138]. For mechanically cooled buildings, internal thermal mass 

Table 1 
Effect of changing U-value, SHGC, and WWR on energy savings in the tropics as 
understood from [30,31,113].  

WWR SHGC Window U- 
Value 

Wall and Roof 
Insulation 

Savings in 
Cooling Loads 

>50% or 
<50% 

Low  High/Low High 

>50% or 
<50% 

High  High/Low Low 

<50%  Low  High 
>50%  Low  Low 
>50%  High High Low 
<50%  Low High Low/High 
>50% or 
<50% 

Irregular Low Poor High  
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can result in greater energy consumption due to heat transfer from/to 
the interiors [120]. On the contrary, it can reduce fluctuations in indoor 
temperatures in hot climate of Jeddah, Saudi Arabia and composite 
climate of Jaipur, India [127]. 

Thus, it can be summarized that the effect of thermal mass is complex 
in the tropics and its application should consider the design of other 
envelope variables. The discordance can be attributed to factors such as 
the level of thermal mass, construction material, insulation and its 
placement, shading, diurnal variations in temperature, climate type, 
night-time ventilation and air change rate [33,137–139,143,144]. 
Ventilation and greater air exchanges can increase indoor thermal 
comfort in the tropical hot-humid climate [143]. Using thermal mass on 
the interior side with outside insulation appears more beneficial [33]. 

2.3. Optical properties 

The radiant solar energy reaching an external surface is partially 
reflected and absorbed depending on the surface characteristics. These 
characteristics can be defined in terms of three optical properties-color, 
solar absorptance, and emissivity with the effect of the latter two being 
more prominent [90,145]. Unlike color, which responds to radiation in 
the visible range, absorptance affects the heating of the surface in both 
visible and infrared regions. However, the surface’s solar absorptance or 
reflectance is related to the type and color of the external finish [88]. 
While solar reflectance is the dominant factor affecting thermal per-
formance during the daytime, emissivity is prominent at night [146]. 

2.3.1. Absorptance or reflection 
In accordance with the law of energy conservation, solar radiation 

falling on an opaque surface can either be absorbed or reflected. As per 
Eq. (7), the total sum, where μ is the reflectance and α is the absorptance, 
should be 1. 

α+ μ = 1 (7) 

As reflectance increases (μ), absorption (α) reduces. The effective-
ness of reflection depends on the color and material texture. Light- 
colored and smooth surfaces offer greater reflectance or low absorp-
tion [136,147]. They serve by reflecting the energetic short waves. The 
cooling energy requirement increases with the solar absorptance of the 
external surfaces in hot climates [18,88,148–150]. The annual elec-
tricity consumption for a building in China reduced by 8.93%, with a 
drop in absorptance from 0.6 to 0.2. However, the energy needed for 
heating increased by 4.02% [151]. A 30% reduction in solar absorption 
can reduce annual cooling burdens in Singapore by 12.6% [17]. 

The surfaces with high solar reflectance offer the potential to 
decrease both surface and indoor air temperatures [152]. Plummeting 
solar absorptance from 0.65 to 0.1 in Mediterranean climates can reduce 
indoor air temperature by up to 80% [140]. Reflective paints report up 
to 7% energy savings [153]. The surface temperatures can drop from 
38.9 ◦C to 9.8 ◦C with a change in reflectance from 0.1 to 0.9 [145]. 

2.3.2. Emissivity 
As per Kirchhoff’s law, the amount of radiation absorbed is equal to 

the amount emitted, as shown in Eq. (8), where Ɛ is the emittance [154]. 
This is, however, true for the same wavelengths. The wavelength of 
emitted radiation depends on the temperature of the emitter [90]. 

Ɛ=α (8) 

High solar reflectance and emissivity can enhance energy efficiency 
in tropical and subtropical climates [155]. The use of high-emissivity 
coatings reduces cooling energy consumption by lowering surface tem-
perature. As an example, for a constant value of solar absorptance, the 
temperature of the external surface at peak can be 39.6 ◦C for an 
emissivity of 0.1 and 31.3 ◦C for an emissivity of 0.9. Koenigsberger 
et al. state that for two materials with the same solar absorption, the one 
with higher emissivity will re-emit much of the absorbed heat and attain 

a lower temperature [90]. As anticipated, higher emissivity allows heat 
to escape rapidly [145]. Malz et al. observed a 2.27% reduction in the 
heat flux through the external wall for a dip in the emissivity from 0.8 to 
0.5. A further decrease to about 5.30% was observed as emissivity 
reduced to 0.2 [1,2]. 

Certain coatings, like white color, offer high solar reflectance (sur-
face albedo ≥65%) and thermal emittance [156]. The two properties 
together make a surface cooler when exposed to solar radiation. The 
applicability of such cool materials has been extensively investigated, 
particularly for roofs. As the primary contributor to solar gains in the 
tropics, cool roofs can significantly reduce cooling burdens and indoor 
air temperatures [8,93,157]. For instance, Pisello et al. notice that while 
using a cool roof can reduce the indoor operative temperature by up to 
2.6 ◦C, the application combined with white paint leads to a temperature 
reduction of 3.1 ◦C. Covering the whole envelope with a cool coating 
produces an improvement of 4.4 ◦C compared to the base case [158]. 

2.3.2.1. Cool roofs. Cool roofs, also known as white or reflective roofs, 
are the best-performing technology compared to other passive tech-
niques like roof insulation, green roof, night ventilation, and external 
shading. While the latter reduces energy consumption by 30%, applying 
a cool roof alone can save 18–93% in tropical climates [88,150,159, 
160]. It can reduce the heat flow into the building by 49% and produce 
greater savings compared to phase change materials (PCM) and green 
roofs in India [34,161]. One can achieve an annual savings of 10–19% 
by applying high albedo coating to all uncoated roofs in arid climates 
[162]. 

Combining cool roofs with other measures can result in energy sav-
ings of up to 78% [163]. Using reflective coatings with PCM can produce 
savings from 5 to 12% monthly in Singapore [79]. Mousavi et al. how-
ever, prefer insulation and reflective paint over PCM, as the former 
combination is not only thermally effective but results in cost savings 
too. The coatings can generate more than 50% savings in annual energy 
consumption in a semi-arid climate [18]. A reflective barrier on an 
insulated external roof surface can improve its thermal performance by 
reducing the insulation temperature by up to 4 K during the daytime 
[164]. Despite its effectiveness in lowering radiation transfer from the 
outer surface to the insulation layer, this may yield counterproductive 
results during nighttime due to restricted radiative cooling. 

2.3.3. White color coating 
The application of color, a strategy used to adapt buildings to the 

local climate in traditional times, has been identified as an inexpensive 
approach for reducing summer space cooling demand. As an example, 
the use of white plaster and clear (cool) paints are capable of reflecting 
up to 95% of solar radiation and emitting a significant portion of it 
(infrared emissivity up to 90%) into the surroundings [90,165,166]. 
While thermally insulated and shaded roofs offer a maximum temper-
ature reduction of 9.9 ◦C and 8.9 ◦C respectively, the application of 
white color can reduce surface temperature by up to 13 ◦C and indoor air 
temperatures by 1.2–3.3 ◦C in hot and arid climates. Applying white 
paint and glazed tiles can reduce discomfort hours by 100% [149,159, 
167]. A light-colored roof also results in 30% lesser total heat gain (via 
conduction and radiation) than a dark-colored roof [168]. An annual 
reduction of 14–26% in air conditioning is possible by converting dark 
roofs to white roofs [162]. However, the effect of color on external 
surfaces reduces with increased insulation. For highly insulated and 
shaded envelopes, the paint’s effect is minor compared to a completely 
exposed envelope [169]. 

Overall, the literature determines that exterior surface finishes with 
light color, high solar reflectance, and emissivity can result in consid-
erable energy savings in the tropics [140]. The measures yield better 
results when applied on roofs than walls. Increasing reflectance and 
emissivity can reduce energy consumption in cooling-dominated cli-
mates, especially in orientations with significant solar irradiance [153, 
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170]. Yet, the impact of altering the reflectance and, consequently, its 
absorption is more significant compared to modifying emissivity [145, 
148]. 

2.4. Physical properties 

2.4.1. Opening ratio 
The window-to-wall ratio or the opening ratio determines the 

amount of incident solar radiation that enters indoors. WWR affects the 
operational carbon from the cooling loads and contributes about 47.4% 
[26,108]. In cooling-dominated climates, a low WWR is advantageous in 
façades with a low U-value [29,171]. Higher ratios can produce over-
heating and, thus, greater cooling energy consumption. Reducing WWR 
from 1 to 0.4 can reduce indoor air temperature and enhance thermal 
comfort while ensuring natural ventilation in the tropics, like in China 
and Malaysia [19,78]. Adjusting window areas can reduce cooling loads 
by 17.82% in India and 39% in hot and humid regions of the United 
States [14,172]. A small WWR reduces solar heat gains and enhances 
comfort levels. However, large windows may be suitable for 
cooling-dominated climates in the south and north orientation [75,173]. 

A WWR of 20% in all directions except the south can result in opti-
mum thermal comfort and cooling loads. In the south, a WWR of 60% 
can provide greater indoor comfort due to the steep angle of incoming 
solar radiation [42]. For the hot climate of Dubai, Green Building Reg-
ulations recommend at least 50% of the glazed areas in the north [65]. It 
is crucial to determine the appropriate WWR for energy efficiency and 
thermal comfort and to increase natural ventilation and daylight, 
particularly in hot and humid climates. 

2.4.2. Shading systems 
Shading, particularly in external systems, is the most effective 

measure for blocking solar radiation [23,58]. Different shading typol-
ogies can reduce the cooling energy demand in South Africa and Egypt 
by 25–50% [174,175]. An egg-crate shading device can decrease indoor 
air temperature and extend indoor comfort hours by 26% in Malaysia’s 
hot–humid climate [23]. 

Optimal shading achieved by increasing the depth on the east and 
west facades can reduce cooling burdens by up to 10% in Singapore and 
Hong Kong [32,151]. The shading of opaque façades in the west and the 
southwest directions report maximum savings with horizontal and ver-
tical shading types [176]. 

Heat transfer can also be lessened by installing vertical greenery on 
external walls. The layers of creeping plants reduce solar radiation by 
about 40–80% [177,178]. The shading from green façades can reduce 
indoor temperatures by 8.4 ◦C in Hong Kong and minimize the external 
surface temperature of a wall from 18.7 ◦C to 9.8 ◦C in Riyadh [29,179]. 
Analogously, it can substantially reduce roof surface temperatures that 
otherwise experience high solar irradiation. The daytime average roof 
temperature in Riyadh can drop by 12.8 ◦C; Mumbai’s greatest 
maximum reduction is 26.1 ◦C [179]. The green facades are suitable 
insulation mechanisms [180,181]. Double-skin green façade on tall 
structures can reduce cooling energy requirements by 20% and air 
conditioning loads by 76% in tropical countries like Indonesia, Brazil 
and Malaysia [39,182–184]. 

Despite its ability to reduce cooling demands, shading reduces 
daylight and might be counterproductive during winter due to the 
reduced solar radiation. It is thus essential to balance WWR, shading, 
and glazing properties according to the building’s orientation [185]. It is 
worth noting that exterior shading screens should be designed based on 
the city’s solar geometry, building orientation, and climate to provide 
shading while ensuring daylight ingress and ventilation [27,37]. These 
may include external movable shading devices or perforated screens that 
limit solar gains and ensure ventilation and daylighting [24,44]. Find-
ings reveal that such screens can increase the daylight area by 50% and 
reduce the total transmitted solar radiation by 63%. It can provide 55% 
savings in annual energy consumption [186]. 

2.5. Geometry 

Apart from the several envelope properties discussed above, other 
factors contributing to building energy performance include climatic 
conditions, building shape, and orientation. These factors need to be 
critically assessed during the building design phase. However, the 
literature indicates a paucity of studies on building geometry in tropical 
nations [55,88,131,187]. The following section thus reviews the current 
literature on building shapes for all climatic zones without limitation to 
the tropics. 

2.5.1. Building shape 
Increasing interest in examining the effect of building shape on 

building energy efficiency is recent. Of the 30-plus shape-centric articles 
reviewed, 75% have been published in the last decade, as illustrated in 
Fig. 8. 

The building shape impacts the total surface area exposed to the 
external environment and thus affects the energy losses [188]. A suitable 
shape and orientation can minimize energy loads by up to 40% without 
additional costs [189]. The selection of the best-performing shape is 
linked to variables like compactness index, shape coefficient, and shape 
proportion [41,63]. Shape proportion (SP) involves changing the pro-
portion of the shape while keeping the volume fixed. Shape coefficient 
(SC), also called shape factor, refers to the ratio of outer surface area in 
contact with the exterior surroundings, ground or adjacent non-heated 
spaces, and internal volume of the building [40,190]. The compact-
ness factor is like the shape coefficient and refers to the ratio of the 
building volume and its outer surface area [191]. 

2.5.1.1. Compactness and shape coefficient (SC). Several researchers 
relate building energy demand with the shape coefficient of buildings. 
Oral & Yilmaz used SC and other design variables to determine 
maximum U-values in Turkey [192]. Depecker et al. conceived fourteen 
parallelepiped buildings for France’s cold and mild Mediterranean 
climate [193]. Observations show that energy consumption is propor-
tional to the SC in a cold climate. In the case of a mild climate with long 
sunny periods, the heat transmitted via walls is less significant, and thus 
the correlation with shape is absent. For the tropics, characterized by 
high solar potential and consequently low transmittance losses, the ef-
fect of the increasing SC on the energy demand is low [45]. 

A very compact building will have a high volume-to-surface ratio, 
exposing the small building surface to heat transmission. Similar to SC, 
the compactness index affects a building’s capacity to store heat and, 
consequently, its heat loss [63]. For the hot summers of Athens, more 
compact shapes (or low SC) resulted in the lowest cooling loads due to 
lesser surface area. A square-shaped building reported the highest en-
ergy performance compared to a rectangular, octagon, or elongated 
square [42]. Though a low SC is preferred in hot climates, rectangular 
buildings can also provide significant savings when properly orientated 
[88]. Studies note that compact buildings are also actively cooled, with 
indoor air temperatures often below outdoor [194]. 

Leo Samuel et al. show that dome-shaped roofs in solar-intensive 
regions like India minimize solar heat gains due to a lower SC and 
self-shading ability [131]. An inverted U-shape room can further reduce 
air temperature due to a lesser sun-exposed area [187]. Tang et al. on the 
contrary, suggest that vaulted roofs result in lower indoor air tempera-
tures due to a larger surface area which permits more heat to be dissi-
pated by convection and thermal radiation at night [55]. 

Overall, it is seen that a small exposed surface area and a low surface- 
to-volume ratio (or more compactness) allow buildings to heat up slowly 
and thus generate reduced energy consumption [194]. The yearly 
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energy use for any building form increases as relative compactness3 

decreases [114]. 

2.5.1.2. Indices other than SC and compactness. Ciardiello et al. used 
shape proportion before calculating SC to adhere to more realistic ge-
ometries [41]. They considered eight different building shapes based on 
the common shapes used in residential buildings. These included linear 
shape (I), L-shaped (L), court (O) and C-shaped (C) buildings, and some 
rare shapes like T-shaped (T), H-shaped (H), cross (X) and Y-shaped (Y). 
After examining four different shape proportions of each shape, the 
authors identified O, T, H, X, and Y as the best-performing shapes. The 
findings reveal that optimizing SC and WWR can result in more energy 
savings Amraoui et al. suggest that though compact forms reduce 
cooling loads, a hyper-compact building is undesirable [195]. Literature 
thus argues that though a low SC assures low energy consumption in 
cold climates, a direct relation cannot be derived for the tropics. Some 
researchers recommend using passive volume, the product of the fa-
çade’s perimetric area (m2) for every 6 m depth or twice the thermal 
zone’s height, as an efficiency indicator [40]. The compact shapes 
balanced with high passive volume are preferred for the temperate 
climate. 

The SC or surface area to volume ratio of a building is influenced by 
its aspect ratio (building width/building length or depth). The building 
shapes with a higher aspect ratio or W/L correspond to lower values for 
SC [196]. W/L also impacts the amount of solar radiation hitting any 
surface. For example, a circular shape with a W/L ratio of 1:1, has the 
lowest SC and receives the least annual solar radiation. Adamski found 
buildings with oval shape bases rather than circular and square to offer 
better thermal performance in heating periods [197]. Research suggests 
acceptable W/L ratios for hot and humid climates to range between 
1.7:1 and 3:1, with 1.7:1 being the optimum shape [75,198]. 

In addition to conventional building shapes, as discussed above, the 
performance of free-form building shapes on a building’s thermal per-
formance has also been investigated. Determining thermal load char-
acteristics and developing approaches for these shapes has received 
wide attention. Jin & Jeong used selected physical design and thermal 
behavior parameters to create different free-form buildings [199]. The 
authors subsequently demonstrate an optimization process for an 
energy-efficient design through parametric modeling in Rhinoceros/-
Grasshopper [43]. 

Thus, several studies have focused on optimizing building envelopes 

to improve energy efficiency through a list of thermal and optical var-
iables but with a narrow focus on optimizing the building shape and 
surrounding built context [200]. The studies investigating building 
shapes have been primarily done regarding SC and shape proportion. 
Appendix A illustrates the building shapes investigated in the reviewed 
studies. 

2.5.1.3. Building orientation. The major factors that govern the associ-
ation between building shape and incident solar radiation include the 
W/L ratio and building orientation [196]. Orientation affects insolation 
and is maximum for geometric shapes with a lower W/L ratio, particu-
larly for east-west elongated shapes [27,196]. Appropriate orientation 
can limit the heat absorption from surroundings and moderate indoor 
temperatures [20]. It also impacts the solar reflectance of the external 
walls, which varies between 0.1 in the south to 0.9 in the east and west 
[41]. 

A building oriented north and south results in the slightest heat gain 
and cooling needs. This is followed by the northwest and the southeast 
directions, particularly in the tropics [22,90,201]. Longer facades 
should be made to face the north and south [42]. Changing the building 
orientation from north/south to east/west can reduce cooling loads 
between 8.57 and 11.54% for buildings in Singapore [32]. It is seen that 
the west and southwest-facing orientations perform worst regarding the 
total number of hours with comfortable indoor air temperatures [202]. 
Preventing windows in east and west directions can create more 
acceptable indoor conditions; windows in these directions receive the 
highest radiation due to a steep angle of incidence [23,203]. A typically 
solar-controlled north window in a hot-arid climate can provide up to 
9% savings in energy consumption. The same can result in 15% savings 
in the other three directions [30]. The solar gains for different building 
orientations are illustrated in Fig. 9 [42]. 

The building orientation also affects the potential for ventilation. 
Changing orientation to enable natural ventilation can elevate annual 
indoor thermal hours by 16% in the hot-humid climate of Malaysia 
[202]. It is wise to orient buildings in a way that permits natural 
ventilation [166]. 

The literature thus evidences the importance of orienting the longer 
building facade in the south or north and the direction of prevailing 
winds in the tropics. Greater southern exposure limits solar gains due to 
the nearly vertical angle of incoming solar radiation, preventing sunlight 
from reaching deep within the floor, as depicted in Fig. 9 [22]. 

3. Literature summary 

According to the literature, the use of studied design variables began 
in the late 20th century. Building insulation, shading, glazing properties, 

Fig. 8. Number of papers published on the shape of the building envelope.  

3 The relative compactness of a building is defined as the ratio of the volume 
to the exterior wall area of the building divided by the ratio of a reference 
building. 
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and reflective coatings have particularly received greater interest. These 
measures have been majorly used to enhance the thermal properties of 
the façade by preventing excessive heat transmission. It is seen that 
using both roof and wall insulation can result in higher savings of up to 
35% compared to insulating either of the components. Thermal insu-
lation remains an attractive solution for reducing energy consumption in 
the tropics. It also dominates the impact of thermal mass. 

Several studies also report using low-emissivity coatings for glazing 
and reflective coatings like cool materials for external surfaces to 
minimize solar heat gains. In studies published after 2000, variables 
such as geometry, glazing, SHGC, and thermal mass have been utilized 
frequently. More research is needed on the effect of shape and adjacent 
built context on cooling energy consumption, particularly in hot regions. 
A summary of the energy savings obtained through combinations of 
different envelope design measures in the tropics is presented in Table 2. 
If applied in combination, these variables can result in an annual 
average savings of 35%. 

A sensitivity analysis, based on the collated literature, was performed 
to examine the influence of each envelope design variable on building 
energy savings. A total of 75 cases that represent a combination of 
different design variables, as depicted in Table 2, were selected. The 
analysis was done by examining the Eta coefficient, which measures the 
strength of association between a scale-dependent variable (maximum 
energy savings) and the categorical explanatory variables [216]. The 
Pearson correlation test was then used to determine the significance 
values (or p-value). The explanatory variables included thermal insu-
lation, shading, WWR, coatings, glazing type, SHGC, and thermal mass. 
All other variables, like infiltration, ventilation, set point temperatures, 
etc., were included under the category ‘others’. 

The chi-square test of independence was further employed to 
determine the relationship between each pair of design variables in 
terms of their investigation in the studied literature. The test compared 
the frequency of each category for one nominal variable to the second 
nominal variable. Cramér’s V, an effect size measurement for the chi- 
square test, was also obtained to measure the strength of association 
between the design variables [217]. 

The sensitivity analysis (Table 3) reveals that insulation, glazing 
type, and WWR have a statistically significant relationship with building 
energy savings (p < 0.1). The insulation has a medium correlation 
(ECC>0.4) but the largest effect compared to other variables, as shown 

in Fig. 10. The type of glazing and WWR are also significant in effecting 
energy savings in the tropics. The strength of association is however 
weak (0.2 < ECC<0.4). 

This observation is in concurrence with Fig. 11 which discusses the 
percentage savings produced by the statistically significant variables. As 
indicated in the figure, the hatched yellow and black lines represent the 
mean and median, respectively. It illustrates the estimated energy sav-
ings possible by using several envelope design measures in the absence 
or presence of insulation, and by considering modifications in glazing 
type and WWR in the tropics. The presence of outliers, represented as 
diamonds, are data points lying significantly outside the range of most 
observations. These outliers provide insights into the extreme cases of 
energy savings observed in the literature. 

As shown by the yellow line, glazing type, and insulation provide a 
mean savings of 30% and can save up to 60% when combined with other 
measures. Without insulation, the average savings are below 20% for a 
majority of observations. WWR has a considerable impact and can in-
crease average savings by over 10% in combination with other variables. 
Similar observations have been reported by several studies conducted in 
the tropics [15,29,101,108,218–220]. 

The type of glazing can also significantly affect energy savings in the 
tropics as illustrated in Figs. 10 and 11. Average savings can drop by 
10% without appropriate glazing design [15,18,26,30,221,222]. Insu-
lation, however, has a greater maximum savings potential as also 
observed from sensitivity analysis in Table 3. The use of external insu-
lation can provide substantial savings in energy consumption [34,99, 
115,117,126,205,223–225]. This alone can yield energy savings of 
23–35% [33,93,96,226]. Literature suggests that more savings are 
observed in hot climates like Oman, Riyadh, Qatar, Delhi, UAE, etc. [16, 
34,65,93,115,116,183,205]. Roof and wall insulation along with 
appropriate window-wall ratio can contribute significantly to energy 
savings in hot climate as also evident from Table 2 [19,69,113,221,227, 
228]. 

A moderate correlation (ECC>0.4) between energy savings and 
others highlights that factors like set-point temperature, ventilation rate, 
type of HVAC system, etc., also have a comparable effect on energy 
savings. Literature reports that infiltration, and natural ventilation play 
a crucial role in hot and humid climate [20,61,77,144,229–231]. Sig-
nificant energy savings are possible from a relatively higher cooling 
setpoint temperature across tropical countries [84,232–235]. Thermal 
mass and orientation were found to be non-significant with the least ECC 
value (ECC<0.2). 

Fig. 12 shows the results from the chi-square test. It demonstrates 
whether or not a relationship exists between two variables (on the 
vertical and horizontal axis). A low p-value (p < 0.1) indicates that the 
considered literature provides sufficient evidence to support the exis-
tence of a significant relation between a pair of variables, whether they 
are examined together or not. Findings reveal that in most of the studies 
conducted in the tropics, the use of insulation has a statistically signif-
icant relationship with building orientation (p < 0.01). Analogously, a 
significant chi-square value for glazing with SHGC and WWR (p < 0.05), 
highlighted in black shows that the three envelope variables are also 
significantly linked (considered/not considered together) in the 
reviewed literature. A low p-value for shading systems with the external 
coating (p < 0.1) and WWR (p < 0.05) also indicates a relationship 
between the two variables. 

The values from the Cramér’s V test, as shown in Fig. 13, illustrate 
the strength of association between a pair of variables on the two axes. 
For instance, Cramer’s V value of 0.3 between WWR and shading in-
dicates a strong positive association between the two variables. A large V 
value along with a low p-value suggests that the two variables are often 
examined together to evaluate building energy performance in the tro-
pics [14,19,28,75,78,117,208–210,236]. However, the figure also sug-
gests that though insulation and building orientation are statistically 
related (p < 0.09), the variables are weekly associated (Cramér’s V =
0.2). Studies that examine insulation rarely consider the effect of 

Fig. 9. Annual solar gain and cooling loads for different orientations in the 
Mediterranean climate. E− W means that the building is oriented, with the 
longer side facing North-South. Reprinted from Ref. [42], with permission 
from Elsevier. 
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changing building orientation as demonstrated in Table 2 [12,18,49,70, 
91,95,120,124,132,140,175,204,213,215,237,238]. 

The results show that type of glazing has a moderate level of asso-
ciation with SHGC and WWR. For instance, almost all studies that 
examine SHGC, consider the effect of the kinds of glazing [18,75,93,110, 
112,117,204,239]. The same holds for studies examining glazing type 
and WWR as also shown in Table 2. However, comparatively more 
research has been conducted on the combined effects of glazing type and 
WWR than on SHGC and WWR in the tropics [19,26,28,65,97,185,208, 

209,232,240–245]. Notably, glazing, WWR, and insulation all 
contribute substantially to energy savings, as discussed in Figs. 10 and 
11. It is evident from Fig. 12 and Table 2 that insulation with glazing 
type and insulation with other variables have received equal attention 
[26,29,31,36,95,102,120,144,219,221,238,242,246]. 

Despite a significant relationship of shading with coating and WWR 
as discussed in Fig. 12, the latter has a stronger association. This suggests 
a growing interest in examining the impact of shading and WWR on 
building energy performance in tropical regions [14,19,117,175, 

Table 2 
A summary of the annual savings (%) obtained by applying combinations of different envelope design solutions. The studies are 
arranged in descending order of their resulting energy savings [206,207,211,212,214]. 
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208–210,242,247,248]. It is evident from Table 2 that only a limited 
number of studies have assessed shading and coating together [14,17]. 

Attempts have also been made to examine shading, glazing, and 
WWR simultaneously [19,242,244,247]. Almost all studies that evaluate 
the impact of WWR also consider shading and glazing. An insignificant 
relation between insulation and thermal mass indicates a paucity of 

literature assessing the combined effect of these variables on energy 
savings in the tropics. Most existing studies examine their impact on 
indoor thermal comfort [91,128,129,131,249,250]. 

4. Conclusion 

Buildings account for a considerable share of total energy con-
sumption for space cooling, specifically in tropical regions. Thus, the 
relationship between building envelope design and energy consumption 
has received growing attention in recent years. The present review 
provides a comprehensive discussion of the studies that investigate the 
effect of several envelope design variables in countries across the tropics 
as a whole. It summarizes their impact on building energy consumption 
and thermal performance. The reviewed literature confirms that energy 
consumption can be reduced by making cautious modifications to the 
thermal, physical, and optical design variables of the building envelope 
and its geometry. 

Building envelope design variables such as insulation or U-value, 
glazing properties, and WWR have primarily been recognized as prom-
ising solutions for improving energy efficiency in tropical buildings. The 

Table 3 
Comparison of the importance of studied envelope variables.  

Variables Eta correlation coefficient (ECC) 

Insulation 0.419*** 
Shading 0.204 
Coating 0.271 
Glazing type 0.314** 
WWR 0.244* 
SHGC 0.220 
Orientation 0.162 
Thermal mass 0.047 
Others 0.430** 

*p < 0.10, **p < 0.05, ***p < 0.01. 
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use of thermal mass and orientation have a minimal influence on total 
energy consumption. An optimized design in hot climates should have a 
large aspect ratio, higher WWR in the north and south, and an ideal 

shading system with low-E coating glazing. External shading in the form 
of green vegetation or perforated screens designed per the city’s solar 
geometry can be effective in cooling-dominated climates. Increasing 

Fig. 10. The importance of building envelope variables for savings in annual energy consumption.  

Fig. 11. Annual savings in energy consumption with/without the use of insulation, WWR, and glazing type.  

Fig. 12. The statistical significance of association between pairs of building 
design variables-p-value (2-tailed sig.) for the chi-square test. A low p-value (p 
< 0.1) indicates a significant relationship. 

Fig. 13. Comparing the strength of association between pairs of building 
design variables- Cramér’s V for the chi-square test. A large value indicates a 
stronger relationship. 
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reflectance and emissivity can reduce energy consumption, especially in 
orientations with significant solar irradiance. Factors like set-point 
temperature, ventilation rate, type of HVAC system, etc., also have a 
substantial effect on energy savings in hot and humid climates. While 
some variables have a direct link with savings, others are found to be 
more complicated in the tropics. 

In general, there is the potential to save 35% of building energy 
annually and up to 60% when all variables are taken into account. The 
annual average can, however, fall below 20% without insulation. Roof 
and wall insulation along with an appropriate window-wall ratio can 
contribute significantly to energy savings in hot climate. It is important 
to note that insulation does not offer similar benefits for all configura-
tions. While it can be effective for a low WWR and glazing with a low 
SHGC, it can be detrimental for large WWR in the west and east. Insu-
lation should be applied considering factors like WWR, thermal mass, 
and glazing properties. While these variables effectively reduce 
conductive and convective heat gains, SHGC helps control direct heat 
transmission. However, fewer studies have been conducted on the 
combined effects of glazing type, WWR, and SHGC in the tropical 
countries. 

The literature reports contradictions when considering thermal mass 
in hot-humid climates. The impacts of adding thermal mass are not 
straightforward in hot-humid climates. While thermally massive walls 
can reduce indoor air temperature during the day, they can be coun-
terproductive at night. Additionally, it can result in greater energy 
consumption in hot-arid climate. The discrepancy can be attributed to 
factors like construction material, level of insulation, diurnal variations 
in temperature, outdoor climate type, night-time ventilation etc. In 
order to account for the variations, the use of thermal mass in the tropics 
should employ tools that capture its dynamic behavior. The studies 
should consider the holistic effect of other design variables and varying 
micro-climate. Interventions should be adapted to local climate and 
characteristics of the building. 

Many existing studies have examined the effect of thermal, optical 
and physical properties of building envelope components on energy use 
and thermal comfort in tropical countries. However, there is a discon-
nect between the studies examining the combined effect of envelope 

variables and factors like occupants, equipment and appliances, HVAC 
systems etc. There needs to be more literature trying to assess the 
combined effects of envelope design properties along with variations in 
occupancy pattern, ventilation type, equipment schedule and efficiency, 
setpoint temperatures, etc. Furthermore, although precise information 
on such characteristics might potentially reveal causative links and a 
common platform for a more logical comparison, such details are often 
lacking in the available research. 

Further examination shows that building shape can significantly 
affect thermal comfort by impacting solar gains in the hot-humid 
climate. Lately, few attempts have been made to determine the ther-
mal characteristics of free-form structures. However, there is limited 
research on the effect of changing building shape on energy consump-
tion, particularly in the tropics. Additionally, more research is needed to 
investigate the combined impact of envelope design variables and urban 
form on indoor thermal comfort and energy consumption in the tropics. 

Lastly, further research is required to investigate the link between 
envelope design, occupant behavior, urban form and appliance activity 
use in the context of potential for renewable energy, target users, and 
accessibility. A more comprehensive understanding is vital to identify 
critical parameters required to enhance energy efficiency in buildings 
and address issues related to sustainable development. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

The authors would like to thank the journals that permitted the use of 
Figs. 5 and 9, and other Figures used in Appendix A.  

Appendix A 

Building shapes and façade types investigated in cited literature work. Reprinted from Refs. [40,41,43,45,114], with permission from Elsevier.   

Source The figure of scheme/case study Elements and techniques established in literature 

[41] Shape I- shape proportions (SP) and corresponding shape coefficients (SC) 

Shape L- SC for SP 1, SP 2, SP 3, SP 4 respectively 

Shape O– SC for SP 1, SP 2, SP 3, SP 4 respectively 

(continued on next page) 
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(continued ) 

Source The figure of scheme/case study Elements and techniques established in literature 

Shape C– SC for SP 1, SP 2, SP 3, SP 4 respectively 

Shape T- SC for SP 1, SP 2, SP 3, SP 4 respectively 

Shape H– SC for SP 1, SP 2, SP 3, SP 4 respectively 

Shape X–SC for SP 1, SP 2, SP 3, SP 4 respectively 

Shape Y– SC for SP 1, SP 2, SP 3, SP 4 respectively 

[43] Free-form building type 

[114] Buildings with relative compactness = 0.689 

Buildings with relative compactness = 0.158 

[45] Building geometry with SC = 1.472 

Building geometry with SC = 1.476 

(continued on next page) 
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(continued ) 

Source The figure of scheme/case study Elements and techniques established in literature 

Building geometry with SC = 1.503 

Building geometry with SC = 1.553 

Building geometry with SC = 1.578 

Building geometry with SC = 1.589 

Building geometry with SC = 1.656 

[40] Passive Volume Ratio (PVR) for Alt 1 = 0.77 
Alt 3 = 0.83 
Alt 12 = 0.87 

PVR for Alt 2 = 0.85 
Alt 7 = 0.79 
Alt 8 = 0.82 

PVR for Alt 5 = 0.85 
Alt 7 = 0.90 
Alt 15 = 0.89 

PVR for Alt 5 = 0.87 
Alt 7 = 0.83 
Alt 15 = 0.90  
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transmittance effect on energy consumption of Mediterranean buildings with 
different thermal mass. Appl Energy 2019;252:113437. https://doi.org/10.1016/ 
j.apenergy.2019.113437. 

[125] Dornelles KA, Roriz M. Thermal inertia, comfort and energy consumption in 
buildings: a case study in São Paulo state - Brazil. Montreal: Canada; 2003. 

[126] Stazi F, Tomassoni E, Bonfigli C, Di Perna C. Energy, comfort and environmental 
assessment of different building envelope techniques in a Mediterranean climate 
with a hot dry summer. Appl Energy 2014;134:176–96. https://doi.org/10.1016/ 
j.apenergy.2014.08.023. 

[127] Bagasi AA, Calautit JK. Experimental field study of the integration of passive and 
evaporative cooling techniques with Mashrabiya in hot climates. Energy Build 
2020;225:110325. https://doi.org/10.1016/j.enbuild.2020.110325. 

[128] Shaviv E. The influence of the orientation of the main solar glazing on the total 
energy consumption of a building. Sol Energy 1981;26:453–4. 

[129] Ogoli DM. Predicting indoor temperatures in closed buildings with high thermal 
mass. Energy Build 2003;35:851–62. https://doi.org/10.1016/S0378-7788(02) 
00246-3. 

[130] Di Perna C, Stazi F, Casalena AU, D’Orazio M. Influence of the internal inertia of 
the building envelope on summertime comfort in buildings with high internal 
heat loads. Energy Build 2011;43:200–6. https://doi.org/10.1016/j. 
enbuild.2010.09.007. 

[131] Leo Samuel DG, Dharmasastha K, Shiva Nagendra SM, Maiya MP. Thermal 
comfort in traditional buildings composed of local and modern construction 
materials. Int J Sustain Built Environ 2017;6:463–75. https://doi.org/10.1016/j. 
ijsbe.2017.08.001. 

[132] Leccese F, Salvadori G, Asdrubali F, Gori P. Passive thermal behaviour of 
buildings: performance of external multi-layered walls and influence of internal 
walls. Appl Energy 2018;225:1078–89. https://doi.org/10.1016/j. 
apenergy.2018.05.090. 

[133] Ren Z, Chen D. Modelling study of the impact of thermal comfort criteria on 
housing energy use in Australia. Appl Energy 2018;210:152–66. https://doi.org/ 
10.1016/j.apenergy.2017.10.110. 

[134] Chiraratananon S, Hien VD. Thermal performance and cost effectiveness of 
massive walls under Thai climate. Energy Build 2011;43:1655–62. https://doi. 
org/10.1016/j.enbuild.2011.03.010. 

[135] Ralegaonkar RV, Gupta R. Review of intelligent building construction: a passive 
solar architecture approach. Renew Sustain Energy Rev 2010;14:2238–42. 
https://doi.org/10.1016/j.rser.2010.04.016. 

[136] Li Y, Yao J, Li R, Zhang Z, Zhang J. Thermal and energy performance of a steel- 
bamboo composite wall structure. Energy Build 2017;156:225–37. https://doi. 
org/10.1016/j.enbuild.2017.09.083. 

[137] Kossecka E, Kosny J. Influence of insulation configuration on heating and cooling 
loads in a continuously used building. Energy Build 2002;34:321–31. https://doi. 
org/10.1016/S0378-7788(01)00121-9. 

[138] Zhu L, Hurt R, Correia D, Boehm R. Detailed energy saving performance analyses 
on thermal mass walls demonstrated in a zero energy house. Energy Build 2009; 
41:303–10. https://doi.org/10.1016/j.enbuild.2008.10.003. 

[139] Ferrari S. Building envelope and heat capacity: re-discovering the thermal mass 
for winter energy saving. Greece: Crete Island; 2007. 
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